Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Open circuit voltage recovery in quantum dot solar cells: a numerical study on the impact of wetting layer and doping

The authors present a numerical study on the influence of wetting layer states and doping on the photovoltage loss of InAs/GaAs quantum dot solar cells. Quantum-mechanical simulations are used to analyse how the reduction of wetting layer by Al(Ga)As overgrowth changes the quantum dot electronic states. Device-level simulations allow to correlate such changes with the achievable open circuit voltage. Almost full open circuit voltage recovery is predicted by combining wetting layer reduction, to realise thermal decoupling of barrier and quantum dot confined states, and doping to suppress radiative recombination through the quantum dot confined states.

References

    1. 1)
      • 3. Gioannini, M., Cedola, A., Di Santo, N., et al: ‘Simulation of quantum dot solar cells including carrier intersubband dynamics and transport’, IEEE J. Photovolt., 2013, 3, (4), pp. 12711278.
    2. 2)
      • 12. Kim, D., Tang, M., Wu, J., et al: ‘Si-doped InAs/GaAs quantum-dot solar cell with alas cap layers’, IEEE J. Photovolt., 2016, PP, (99), pp. 16.
    3. 3)
      • 17. Luque, A., Martí, A., Cuadra, L.: ‘Thermodynamic consistency of sub-bandgap absorbing solar cell proposals’, IEEE Trans. Electron Devices , 2001, 48, (9), pp. 21182124.
    4. 4)
      • 1. Okada, Y., Ekins-Daukes, N.J., Kita, T., et al: ‘Intermediate band solar cells: recent progress and future directions’, Appl. Phys. Rev., 2015, 2, (2), p. 021302.
    5. 5)
      • 18. Sablon, K.A., Sergeev, A., Vagidov, N., et al: ‘Effects of quantum dot charging on photoelectron processes and solar cell characteristics’, Solar Energy Mater. Solar Cells, 2013, 117, pp. 638644.
    6. 6)
      • 2. Wu, J., Chen, S., Seeds, A., et al: ‘Quantum dot optoelectronic devices: lasers, photodetectors and solar cells’, J. Phys. D, Appl. Phys., 2015, 48, (36), p. 363001.
    7. 7)
      • 8. Lam, P., Hatch, S., Wu, J., et al: ‘Voltage recovery in charged InAs/GaAs quantum dot solar cells’, Nano Energy, 2014, 6, pp. 159166.
    8. 8)
      • 22. Sablon, K., Sergeev, A., Vagidov, N., et al: ‘Effective harvesting, detection, and conversion of IR radiation due to quantum dots with built-in charge’, Nanoscale Res. Lett., 2011, 6, (1), pp. 113.
    9. 9)
      • 11. Sablon, K., Sergeev, A., Little, J., et al: ‘Nanoscale optimization of quantum dot media for effective photovoltaic conversion’. SPIE Defense+Security, 2014, pp. 908313908313.
    10. 10)
      • 19. Cappelluti, F., Musu, A., Khalili, A.: ‘Study of light-trapping enhanced quantum dot solar cells based on electrical and optical numerical simulations’. 2016 Compound Semiconductor Week (CSW) [Includes 28th Int. Conf. on Indium Phosphide Related Materials (IPRM) 43rd Int. Symp. on Compound Semiconductors (ISCS), June 2016, pp. 12.
    11. 11)
      • 20. Cuevas, A.: ‘The recombination parameter {J0}’, Energy Procedia, 2014, 55, pp. 5362, proceedings of the 4th International Conference on Crystalline Silicon Photovoltaics (SiliconPV 2014).
    12. 12)
      • 6. Yang, X., Wang, K., Gu, Y., et al: ‘Improved efficiency of InAs/GaAs quantum dots solar cells by Si-doping’, Sol. Energy Mater. Sol. Cells, 2013, 113, pp. 144147.
    13. 13)
      • 13. Varghese, A., Yakimov, M., Tokranov, V., et al: ‘Complete voltage recovery in quantum dot solar cells due to suppression of electron capture’, Nanoscale, 2016, 8, (13), pp. 72487256.
    14. 14)
      • 21. Ryzhii, V., Khmyrova, I., Pipa, V., et al: ‘Device model for quantum dot infrared photodetectors and their dark-current characteristics’, Semicond. Sci. Technol., 2001, 16, (5), p.331.
    15. 15)
      • 14. ‘nextnano semiconductor software solutions’. Available at http://www.nextnano.com.
    16. 16)
      • 4. Sellers, D.G., Polly, S., Hubbard, S.M., et al: ‘Analyzing carrier escape mechanisms in InAs/GaAs quantum dot p-i-n junction photovoltaic cells’, Appl. Phys. Lett., 2014, 104, (22), pp. 223903-1223903-4.
    17. 17)
      • 9. Cappelluti, F., Gioannini, M., Khalili, A.: ‘Impact of doping on InAs/GaAs quantum-dot solar cells: a numerical study on photovoltaic and photoluminescence behavior’, Sol. Energy Mater. Sol. Cells, 2016, 157, pp. 209220.
    18. 18)
      • 5. Kita, T., Hasagawa, R., Inoue, T.: ‘Suppression of nonradiative recombination process in directly si-doped InAs/GaAs quantum dots’, J. Appl. Phys., 2011, 110, (10), p. 103511.
    19. 19)
      • 16. Luque, A., Martí, A.: ‘Increasing the efficiency of ideal solar cells by photon induced transitions at intermediate levels’, Phys. Rev. Lett., 1997, 78, (26), pp. 50145017.
    20. 20)
      • 10. Tutu, F.K., Lam, P., Wu, J., et al: ‘InAs/GaAs quantum dot solar cell with an alas cap layer’, Appl. Phys. Lett., 2013, 102, (16), p. 163907.
    21. 21)
      • 15. Lee, S., Lazarenkova, O.L., von Allmen, P., et al: ‘Effect of wetting layers on the strain and electronic structure of InAs self-assembled quantum dots’, Phys. Rev. B, 2004, 70, (12), p. 125307.
    22. 22)
      • 7. Polly, S., Forbes, D., Driscoll, K., et al: ‘Delta-doping effects on quantum-dot solar cells’, IEEE J. Photovolt., 2014, 4, (4), pp. 10791085.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-opt.2016.0069
Loading

Related content

content/journals/10.1049/iet-opt.2016.0069
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address