Open circuit voltage recovery in quantum dot solar cells: a numerical study on the impact of wetting layer and doping

Open circuit voltage recovery in quantum dot solar cells: a numerical study on the impact of wetting layer and doping

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Optoelectronics — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

The authors present a numerical study on the influence of wetting layer states and doping on the photovoltage loss of InAs/GaAs quantum dot solar cells. Quantum-mechanical simulations are used to analyse how the reduction of wetting layer by Al(Ga)As overgrowth changes the quantum dot electronic states. Device-level simulations allow to correlate such changes with the achievable open circuit voltage. Almost full open circuit voltage recovery is predicted by combining wetting layer reduction, to realise thermal decoupling of barrier and quantum dot confined states, and doping to suppress radiative recombination through the quantum dot confined states.


    1. 1)
      • 1. Okada, Y., Ekins-Daukes, N.J., Kita, T., et al: ‘Intermediate band solar cells: recent progress and future directions’, Appl. Phys. Rev., 2015, 2, (2), p. 021302.
    2. 2)
      • 2. Wu, J., Chen, S., Seeds, A., et al: ‘Quantum dot optoelectronic devices: lasers, photodetectors and solar cells’, J. Phys. D, Appl. Phys., 2015, 48, (36), p. 363001.
    3. 3)
      • 3. Gioannini, M., Cedola, A., Di Santo, N., et al: ‘Simulation of quantum dot solar cells including carrier intersubband dynamics and transport’, IEEE J. Photovolt., 2013, 3, (4), pp. 12711278.
    4. 4)
      • 4. Sellers, D.G., Polly, S., Hubbard, S.M., et al: ‘Analyzing carrier escape mechanisms in InAs/GaAs quantum dot p-i-n junction photovoltaic cells’, Appl. Phys. Lett., 2014, 104, (22), pp. 223903-1223903-4.
    5. 5)
      • 5. Kita, T., Hasagawa, R., Inoue, T.: ‘Suppression of nonradiative recombination process in directly si-doped InAs/GaAs quantum dots’, J. Appl. Phys., 2011, 110, (10), p. 103511.
    6. 6)
      • 6. Yang, X., Wang, K., Gu, Y., et al: ‘Improved efficiency of InAs/GaAs quantum dots solar cells by Si-doping’, Sol. Energy Mater. Sol. Cells, 2013, 113, pp. 144147.
    7. 7)
      • 7. Polly, S., Forbes, D., Driscoll, K., et al: ‘Delta-doping effects on quantum-dot solar cells’, IEEE J. Photovolt., 2014, 4, (4), pp. 10791085.
    8. 8)
      • 8. Lam, P., Hatch, S., Wu, J., et al: ‘Voltage recovery in charged InAs/GaAs quantum dot solar cells’, Nano Energy, 2014, 6, pp. 159166.
    9. 9)
      • 9. Cappelluti, F., Gioannini, M., Khalili, A.: ‘Impact of doping on InAs/GaAs quantum-dot solar cells: a numerical study on photovoltaic and photoluminescence behavior’, Sol. Energy Mater. Sol. Cells, 2016, 157, pp. 209220.
    10. 10)
      • 10. Tutu, F.K., Lam, P., Wu, J., et al: ‘InAs/GaAs quantum dot solar cell with an alas cap layer’, Appl. Phys. Lett., 2013, 102, (16), p. 163907.
    11. 11)
      • 11. Sablon, K., Sergeev, A., Little, J., et al: ‘Nanoscale optimization of quantum dot media for effective photovoltaic conversion’. SPIE Defense+Security, 2014, pp. 908313908313.
    12. 12)
      • 12. Kim, D., Tang, M., Wu, J., et al: ‘Si-doped InAs/GaAs quantum-dot solar cell with alas cap layers’, IEEE J. Photovolt., 2016, PP, (99), pp. 16.
    13. 13)
      • 13. Varghese, A., Yakimov, M., Tokranov, V., et al: ‘Complete voltage recovery in quantum dot solar cells due to suppression of electron capture’, Nanoscale, 2016, 8, (13), pp. 72487256.
    14. 14)
      • 14. ‘nextnano semiconductor software solutions’. Available at
    15. 15)
      • 15. Lee, S., Lazarenkova, O.L., von Allmen, P., et al: ‘Effect of wetting layers on the strain and electronic structure of InAs self-assembled quantum dots’, Phys. Rev. B, 2004, 70, (12), p. 125307.
    16. 16)
      • 16. Luque, A., Martí, A.: ‘Increasing the efficiency of ideal solar cells by photon induced transitions at intermediate levels’, Phys. Rev. Lett., 1997, 78, (26), pp. 50145017.
    17. 17)
      • 17. Luque, A., Martí, A., Cuadra, L.: ‘Thermodynamic consistency of sub-bandgap absorbing solar cell proposals’, IEEE Trans. Electron Devices , 2001, 48, (9), pp. 21182124.
    18. 18)
      • 18. Sablon, K.A., Sergeev, A., Vagidov, N., et al: ‘Effects of quantum dot charging on photoelectron processes and solar cell characteristics’, Solar Energy Mater. Solar Cells, 2013, 117, pp. 638644.
    19. 19)
      • 19. Cappelluti, F., Musu, A., Khalili, A.: ‘Study of light-trapping enhanced quantum dot solar cells based on electrical and optical numerical simulations’. 2016 Compound Semiconductor Week (CSW) [Includes 28th Int. Conf. on Indium Phosphide Related Materials (IPRM) 43rd Int. Symp. on Compound Semiconductors (ISCS), June 2016, pp. 12.
    20. 20)
      • 20. Cuevas, A.: ‘The recombination parameter {J0}’, Energy Procedia, 2014, 55, pp. 5362, proceedings of the 4th International Conference on Crystalline Silicon Photovoltaics (SiliconPV 2014).
    21. 21)
      • 21. Ryzhii, V., Khmyrova, I., Pipa, V., et al: ‘Device model for quantum dot infrared photodetectors and their dark-current characteristics’, Semicond. Sci. Technol., 2001, 16, (5), p.331.
    22. 22)
      • 22. Sablon, K., Sergeev, A., Vagidov, N., et al: ‘Effective harvesting, detection, and conversion of IR radiation due to quantum dots with built-in charge’, Nanoscale Res. Lett., 2011, 6, (1), pp. 113.

Related content

This is a required field
Please enter a valid email address