http://iet.metastore.ingenta.com
1887

Concept and numerical simulations of a widely tunable GaAs-based sampled-grating diode laser emitting at 976 nm

Concept and numerical simulations of a widely tunable GaAs-based sampled-grating diode laser emitting at 976 nm

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Optoelectronics — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Tunable diode lasers are essential components in various optical systems. The authors present a concept and simulations of a four-section, widely tunable GaAs-based sampled-grating (SG) distributed-Bragg reflector (DBR) laser emitting at 976 nm. This work includes the design approach of the SG reflectors and the simulation of the behaviour of the modes in the active cavity during the wavelength tuning process. Parameters such as the lasing wavelength, threshold current and the gain of the lasing and of the adjacent side modes during the tuning are presented. The numerical results presented suggest a tunability of at least 17 nm, with a threshold current change of only 2.5 mA and single-mode operation over the entire tuning range, without the need of simultaneous adjustments of the phase section. Finally, the authors present early experimental results of a developed GaAs-based vertical structure, providing a high coupling coefficient of , thus suitable for implementation of an SG-DBR laser design.

References

    1. 1)
      • 1. Coldren, L.A., Fish, G.A., Akulova, Y., et al: ‘Tunable semiconductor lasers: A tutorial’, J. Lightwave Technol., 2004, 22, (1), pp. 193202, doi: 10.1109/JLT.2003.822207.
    2. 2)
      • 2. Coldren, L.A.: ‘Monolithic tunable diode lasers’, IEEE J. Sel. Top. Quantum Electron., 2000, 6, (6), pp. 988999, doi: 10.1109/2944.902147.
    3. 3)
      • 3. Chi, M., Jensen, O.B., Holm, J., et al: ‘Tunable high-power narrow-linewidth semiconductor laser based on an external-cavity tapered amplifier’, Opt. Express, 2005, 13, (26), pp. 1058910596, doi: 10.1364/OPEX.13.010589.
    4. 4)
      • 4. Marschall, S., Klein, T., Wieser, W., et al: ‘Fourier domain mode-locked swept source at 1050 nm based on a tapered amplifier’, Opt. Express, 2010, 18, (15), pp. 1582015831, doi: 10.1364/OE.18.015820.
    5. 5)
      • 5. Seidelin, J.D., Tidemand-Lichtenberg, P., Pedersen, C.: ‘Room-temperature mid-infrared single-photon spectral imaging’, Nat. Photonics, 2012, 6, pp. 788793, doi: 10.1038/nphoton.2012.231.
    6. 6)
      • 6. Anna, J.M., Nee, M.J., Baiz, C.R., et al: ‘Measuring absorptive two-dimensional infrared spectra using chirped-pulse upconversion detection’, J. Opt. Soc. Am. B, 2010, 27, (3), pp. 382393, doi: 10.1364/JOSAB.27.000382.
    7. 7)
      • 7. Høgstedt, L., Seidelin, J.D., Sahlberg, A., et al: ‘Low-noise mid-IR upconversion detector for improved IR-degenerate four-wave mixing gas sensing’, Opt. Lett., 2014, 39, (18), pp. 53215324, doi: 10.1364/OL.39.005321.
    8. 8)
      • 8. Boyd, R.W.: ‘Nonlinear Optics’ (Academic Press, 2008, 3rd edn.), Chpt. 1, ISBN: 978–0-12-369470-6.
    9. 9)
      • 9. Hu, Q., Seidelin, J.D., Pedersen, C., et al: ‘High-resolution mid-IR spectrometer based on frequency upconversion’, Opt. Lett., 2012, 37, (24), pp. 52325234, doi: 10.1364/OL.37.005232.
    10. 10)
      • 10. Martinus, L.K., Tidemand-Lichtenberg, P., Seidelin, J.D., et al: ‘Infrared upconversion hyperspectral imaging’, Opt. Lett., 2015, 40, (6), pp. 938941, doi: 10.1364/OL.40.000938.
    11. 11)
      • 11. Wenzel, H., Klehr, A., Braun, M., et al: ‘Design and realization of high-power DFB lasers’, Proc. SPIE 5594, Physics and Applications of Optoelectronic Devices, 2004, 110, doi: 10.1117/12.569039.
    12. 12)
      • 12. Sumpf, B.: ‘Determination of line intensities in the ν1  +  ν3 band of SO 2 applying a tunable diode laser spectrometer’, J. Mol. Spectrosc., 1997, 186, (2), pp. 249255, doi: 10.1006/jmsp.1997.7438.
    13. 13)
      • 13. Buss, J., Amann, M.-C., Blumenthal, D.J.: ‘Tunable laser diodes and related optical sources’ (SPIE Press Book, 2005, 2nd edn.), chapter 7, ISBN: 978-0-471-20816-7.
    14. 14)
      • 14. Jayaraman, V., Chuang, Z.-M., Coldren, L.A.: ‘Theory, design, and performance of extended tuning range semiconductor lasers with sampled gratings’, IEEE J. Quantum Electron., 1993, 29, (6), doi: 10.1109/3.234440.
    15. 15)
      • 15. Ishii, H., Kano, F., Tohmori, Y., et al: ‘Narrow spectral linewidth under wavelength tuning in thermally tunable super-structure-grating (SSG) DBR lasers’, IEEE J. Sel. Top. Quantum Electron., 1995, 1, (2), doi: 10.1109/2944.401222.
    16. 16)
      • 16. Bandelow, U., Leonhardt, U.: ‘Light propagation in one-dimensional lossless dielectrica: transfer matrix method and coupled mode theory’, Opt. Commun., 1993, 101, (1–2), pp. 9299, doi: 10.1016/0030-4018(93)90329-4.
    17. 17)
      • 17. Yariv, A.: ‘Coupled-mode theory for guided-wave optics’, IEEE J. Quantum Electron., 1973, 9, (9), pp. 919933, doi: 10.1109/JQE.1973.1077767.
    18. 18)
      • 18. Klotzkin, D.J.: ‘Introduction to semiconductor lasers for optical communications’ (Springer-Verlag New York, 2014), chapter 9.4, ISBN: 978-1-4614-9340-2.
    19. 19)
      • 19. Coldren, L.A., Corzine, S.W., Mashanovitch, M.L.: ‘Diode lasers and photonic integrated circuits’ (Wiley, New York, 2012, 2nd edn.), chapter 2, ISBN: 978-0-470-48412-8.
    20. 20)
      • 20. Schultz, C.M., Crump, P., Maaßdorf, A., et al: ‘In situ etched gratings embedded in AlGaAs for efficient high power 970 nm distributed feedback broad-area lasers’, Appl. Phys. Lett., 2012, 100, (201115), doi: 10.1063/1.4718916.
    21. 21)
      • 21. Baca, A.G., Ashby, C.I.H.: ‘Fabrication of GaAs devices’ (The Institution of Electrical Engineers), 2005, chapt. 3, ISBN: 0863413536, pp. 9193.
    22. 22)
      • 22. Maaßdorf, A., Weyers, M.: ‘In-situ etching of GaAs/Alx Ga1x As by CBr4’, J. Cryst. Growth, 2008, 310, (23), pp. 47544756, doi: 10.1016/j.jcrysgro.2008.07.064.
    23. 23)
      • 23. Wenzel, H.: ‘Green's function based simulation of the optical spectrum of multisection lasers’, IEEE J. Sel. Top. Quantum Electron., 2003, 9, pp. 865871, doi: 10.1109/JSTQE.2003.818344.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-opt.2016.0068
Loading

Related content

content/journals/10.1049/iet-opt.2016.0068
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address