access icon free Impact of carrier dynamics on the photovoltaic performance of quantum dot solar cells

The study presents a theoretical investigation of the impact of individual electron and hole dynamics on the photovoltaic characteristics of InAs/GaAs quantum dot solar cells. The analysis is carried out by exploiting a model which includes a detailed description of quantum dots (QD) kinetics within a drift-diffusion formalism. Steady-state and transient simulations show that hole thermal spreading across the closely spaced QD valence band states allows to extract the maximum achievable photocurrent from the QDs; on the other hand, slow hole dynamics turns QDs into efficient traps, impairing the short circuit current despite the extended light harvesting provided by the QDs.

Inspec keywords: indium compounds; gallium arsenide; electron optics; solar cells; valence bands; III-V semiconductors; semiconductor quantum dots; radiation pressure

Other keywords: hole thermal spreading; closely spaced QD valence band states; steady-state simulations; InAs-GaAs; optical trapping; photovoltaic characteristics; transient simulations; photocurrent; light harvesting; carrier dynamics; hole dynamics; drift-diffusion formalism; electron dynamics; indium arsenide-gallium arsenide quantum dot solar cells

Subjects: Mechanical effects of light; Solar cells and arrays; Photoelectric conversion; solar cells and arrays; Semiconductor superlattices, quantum wells and related structures; Solar collectors, concentrators and control films: optical aspects; II-VI and III-V semiconductors; Electron beams and electron optics

References

    1. 1)
    2. 2)
    3. 3)
    4. 4)
      • 18. NSM Electronic Archive: ‘New semiconductor materials, characteristics and properties’ (Ioffe Physico-Technical Institute). Available: http://www.ioffe.ru/SVA/NSM/Semicond.
    5. 5)
    6. 6)
    7. 7)
    8. 8)
      • 16. Dai, Y., Bailey, C.G., Kerestes, C., Forbes, D., Hubbard, S.M.: ‘Investigation of carrier escape mechanism in InAs/GaAs quantum dot solar cells’. 38th IEEE Photovoltaic Specialists Conf. (PVSC), 2012, pp. 000039000044.
    9. 9)
    10. 10)
    11. 11)
      • 15. Jolley, G., Fu, L., Lu, H., Tan, H.H., Jagadish, C.: ‘The role of intersubband optical transitions on the electrical properties of InGaAs/GaAs quantum dot solar cells’, Prog. Photovolt: Res. Appl., 2013, 21, (4), pp. 736746.
    12. 12)
    13. 13)
    14. 14)
    15. 15)
      • 9. Dai, Y., Polly, S., Hellström, S., et al: ‘Effects of electric field on thermal and tunnelingcarrier escape in InAs/GaAs quantum dot solar cells’. Proc. SPIE, 2014, vol. 8981, pp. 898106898106–6.
    16. 16)
    17. 17)
    18. 18)
    19. 19)
    20. 20)
      • 3. Morioka, T., Ryuji, O., Takata, A., et al: ‘Multi-stacked InAs/GaNAs quantum dots with direct Si doping for use in intermediate band solar cell’. 35th IEEE Photovoltaic Specialists Conf. (PVSC), 2010, pp. 001834001837.
    21. 21)
      • 12. Ignatiev, I.V., Kozin, I.E.: ‘Semiconductor quantum dots’ (Springer-Verlag, Berlin, 2002), ch. Dynamics of Carrier Relaxation in Self-Assembled Quantum Dots.
    22. 22)
      • 17. Caughey, D.M., Thomas, R.E.: ‘Carrier mobility in Silicon empirically related to doping and field’. Proc. IEEE, 1967, vol. 55, pp. 21922193.
    23. 23)
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-opt.2014.0080
Loading

Related content

content/journals/10.1049/iet-opt.2014.0080
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading