http://iet.metastore.ingenta.com
1887

Design and characteristics of staggered InGaN quantum-well light-emitting diodes in the green spectral regime

Design and characteristics of staggered InGaN quantum-well light-emitting diodes in the green spectral regime

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Optoelectronics — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Staggered InGaN quantum wells (QWs) are investigated both numerically and experimentally as improved active region for light-emitting diodes (LEDs) emitting at 520–525 nm. Based on a self-consistent six-band k·p method, band structures of both two-layer staggered InxGa1−xN/InyGa1−yN QW and three-layer staggered InyGa1−yN/InxGa1−xN/InyGa1−yN QW structures are investigated as active region to enhance the spontaneous emission radiative recombination rate (Rsp) for LEDs emitting at 520–525 nm. Numerical analysis shows significant enhancement of Rsp for both two-layer and three-layer staggered InGaN QWs as compared to that of the conventional InzGa1−zN QW. Significant reduction of the radiative carrier lifetime contributes to the enhancement of the radiative efficiency for both two-layer and three-layer staggered InGaN QW LEDs emitting at 520–525 nm. Three-layer staggered InGaN QW LEDs emitting at 520–525 nm was grown by metal-organic chemical vapour deposition (MOCVD) by employing graded-temperature profile. Power density-dependent cathodoluminescence (CL) measurements show the enhancement of peak luminescence by up to 3 times and integrated luminescence by 1.8–2.8 times for the three-layer staggered InGaN QW LED. Electroluminescence (EL) output power of the staggered InGaN QW LED exhibits 2.0–3.5 times enhancement as compared to that of the conventional InGaN QW LED. The experimental results show the good agreement with theory.

References

    1. 1)
      • S. Nakamura , M. Senoh , N. Iwasa , S. Nagahama , T. Yamada , T. Mukai . Superbright green InGaN single-quantum-well-structure light-emitting diodes. Jpn. J. Appl. Phys. , 34 , L1332 - L1335
    2. 2)
      • J. Zhang , J. Yang , G. Simin . Enhanced luminescence in InGaN multiple quantum wells with quaternary AlInGaN barriers. Appl. Phys. Lett. , 17 , 2668 - 2670
    3. 3)
      • X. Guo , Y.L. Li , E.F. Schubert . Efficiency of GaN/InGaN light-emitting diodes with interdigitated mesa geometry. Appl. Phys. Lett. , 13 , 1936 - 1938
    4. 4)
      • I.H. Brown , P. Blood , P.M. Smowton . Time evolution of the screening of piezoelectric fields in InGaN quantum wells. IEEE J. Quantum Electron. , 12 , 1202 - 1208
    5. 5)
      • Y.K. Ee , P. Kumnorkaew , R.A. Arif . Optimization of light extraction efficiency of III-nitride light emitting diodes with self-assembled colloidal-based microlenses. IEEE J. Sel. Top. Quantum Electron. , 4 , 1218 - 1225
    6. 6)
      • M.R. Krames , M. Ochiai-Holcomb , G.E. Höfler . High-power truncated-inverted-pyramid (AlxGa1−x)0.5In0.5P/GaP light-emitting diodes exhibiting >50% external quantum efficiency. Appl. Phys. Lett. , 16 , 2365 - 2367
    7. 7)
      • M.R. Krames , O.B. Shchekin , R. Mueller-Mach . Status and future of high-power light-emitting diodes for solid-state lighting. J. Display Technol. , 2 , 160 - 175
    8. 8)
      • R.M. Farrell , D.F. Feezell , M.C. Schmidt . Continuous-wave operation of AlGaN-cladding-free nonpolar m-plane InGaN/GaN laser diodes. Jpn. J. Appl. Phys. , 32 , L761 - L763
    9. 9)
      • J. Park , Y. Kawakami . Photoluminescence property of InGaN single quantum well with embedded AlGaN δ layer. Appl. Phys. Lett. , 20
    10. 10)
      • S.H. Park , J. Park , E. Yoon . Optical gain in InGaN/GaN quantum well structures with embedded AlGaN delta layer. Appl. Phys. Lett. , 2
    11. 11)
      • R.A. Arif , Y.K. Ee , N. Tansu . Polarization engineering via staggered InGaN quantum wells for radiative efficiency enhancement of light emitting diodes. Appl. Phys. Lett. , 9
    12. 12)
      • R.A. Arif , H. Zhao , Y.K. Ee , N. Tansu . Spontaneous emission and characteristics of staggered InGaN quantum-well light-emitting diodes. IEEE J. Quantum Electron. , 6 , 573 - 580
    13. 13)
      • H. Zhao , R.A. Arif , N. Tansu . Design analysis of staggered InGaN quantum wells light-emitting diodes at 500–540 nm. IEEE J. Sel. Top. Quantum Electron. , 4 , 1104 - 1114
    14. 14)
      • H. Zhao , G. Liu , X.H. Li . Growths of staggered InGaN quantum wells light-emitting diodes emitting at 520–525 nm employing graded growth-temperature profile. Appl. Phys. Lett. , 6
    15. 15)
      • S.H. Park , D. Ahn , J.W. Kim . High-efficiency staggered 530 nm InGaN/InGaN/GaN quantum-well light-emitting diodes. Appl. Phys. Lett. , 4
    16. 16)
      • S.H. Park , D. Ahn , B.H. Koo , J.W. Kim . Electronic and optical properties of staggered InGaN/InGaN quantum-well light-emitting diodes. Phys. Stat. Sol. A , 11 , 2637 - 2640
    17. 17)
      • R.A. Arif , H. Zhao , N. Tansu . Type-II InGaN–GaNAs quantum wells active regions for lasers applications. Appl. Phys. Lett. , 1
    18. 18)
      • H. Zhao , R.A. Arif , N. Tansu . Self consistent analysis of Type-II ‘W’ InGaN–GaNAs quantum well lasers. J. Appl. Phys. , 5
    19. 19)
      • H. Zhao , R.A. Arif , Y.K. Ee , N. Tansu . Optical gain analysis of strain-compensated InGaN–AlGaN quantum well active regions for lasers emitting at 420–500 nm. Opt. Quantum Electron. , 301 - 306
    20. 20)
      • H. Zhao , R.A. Arif , Y.K. Ee , N. Tansu . Self-consistent analysis of strain-compensated InGaN–AlGaN quantum wells for lasers and light-emitting diodes. IEEE J. Quantum Electron , 1 , 66 - 78
    21. 21)
      • S.L. Chuang , C.S. Chang . A band-structure model of strained quantum-well wurtzite semiconductors. Semicond. Sci. Technol. , 3 , 252 - 263
    22. 22)
      • S.L. Chuang , C.S. Chang . k•p method for strained wurtzite semiconductors. Phys. Rev. B. , 4 , 2491 - 2504
    23. 23)
      • S.L. Chuang . (1995) Physics of optoelectronics devices.
    24. 24)
      • I. Vurgaftman , J.R. Meyer , J. Piprek . Electron bandstructure parameters, Nitride semiconductor devices.
    25. 25)
      • I. Vurgaftman , J.R. Meyer . Band parameters for nitrogen-containing semiconductors. J. Appl. Phys. , 6 , 3675 - 3696
    26. 26)
      • C.G. Van de Walle , J. Neugebauer . Small valence-band offsets at GaN/InGaN heterojunctions. Appl. Phys. Lett. , 19 , 2577 - 2579
    27. 27)
      • S.L. Chuang . Optical gain of strained wurtzite GaN quantum-well lasers. IEEE J. Quantum Electron. , 10 , 1791 - 1800
    28. 28)
      • J. Hader , J.V. Moloney , B. Pasenow . On the importance of radiative and Auger losses in GaN-based quantum wells. Appl. Phys. Lett. , 26
    29. 29)
      • J. Hader , J.V. Moloney , A. Thranhardt , S.W. Koch , J. Piprek . Interband transitions in InGaN quantum wells, Nitride semiconductor devices.
    30. 30)
      • Y.C. Shen , G.O. Mueller , S. Watanabe , N.F. Gardner , A. Munkholm , M.R. Krames . Auger recombination in InGaN measured by photoluminescence. Appl. Phys. Lett. , 14
    31. 31)
      • M.F. Schubert , S. Chhajed , J.K. Kim . Effect of dislocation density on efficiency droop in GaInN/GaN light-emitting diodes. Appl. Phys. Lett. , 23
    32. 32)
      • J.K. Son , S.N. Lee , H.S. Paek . Radiative and non-radiative transitions in blue quantum wells embedded in AlInGaN-based laser diodes. Phys. Stat. Sol. (c) , 7 , 2780 - 2783
    33. 33)
      • Y. Schwarz , H. Braun , K. Kojima , Y. Kawakami , S. Nagahama , T. Mukai . Interplay of built-in potential and piezoelectric field on carrier recombination in green light emitting InGaN quantum wells. Appl. Phys. Lett. , 12
    34. 34)
      • N. Tansu , L.J. Mawst . Current injection efficiency of 1300-nm InGaAsN quantum-well lasers. J. Appl. Phys. , 5
    35. 35)
      • S.H. Park , S.L. Chuang . Many-body optical gain of wurtzite GaN-based quantum-well lasers and comparison with experiment. Appl. Phys. Lett. , 3 , 287 - 289
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-opt.2009.0050
Loading

Related content

content/journals/10.1049/iet-opt.2009.0050
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address