Implementation of coarse wavelength division multiplexing multi-wavelength routing switch core for storage area networks

Access Full Text

Implementation of coarse wavelength division multiplexing multi-wavelength routing switch core for storage area networks

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Optoelectronics — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

With an increasing demand on storage devices in network enterprises, storage area networks (SANs) have attracted significant attention and are currently considered as one of the most important network elements in the next generation optical Internet. An optical switch fabric capable of multicast transmission and multiple wavelength operation corresponding to a SAN's growth is critical, since SANs will soon suffer from data bottlenecks and cost inflation because of limited switching capabilities within pure electronics. The authors present and demonstrate a reconfigurable shutter-based free-space optical switching core capable of multicast transmission using multiple wavelengths per-fibre for use in optical SANs. The switch architecture, operation mechanism and the design of key components are described. New optical materials are utilised to raise the switching speed, and ferroelectric liquid crystals (FLCs) or transparent lanthanum-modified lead zirconate titanate (PLZT) have been compared. The optical performance of an implemented crossbar switch prototype is evaluated through a proposed node architecture constructed with a transceiver-based test-bed.

Inspec keywords: wavelength division multiplexing; storage area networks; telecommunication network routing; multicast communication; optical fibre networks

Other keywords: storage area networks; optical switch fabric; multicast transmission; transceiver-based test-bed; coarse wavelength division multiplexing multiwavelength routing switch core; network enterprises; next generation optical Internet; ferroelectric liquid crystals; transparent lanthanum-modified lead zirconate titanate; reconfigurable shutter-based free-space optical switching core; crossbar switch prototype

Subjects: Computer communications; Communication network design, planning and routing; Local area networks; Multiplexing and switching in optical communication; Digital storage; Optical fibre networks

References

    1. 1)
      • F. Zhang , N. Collings , W.A. Crossland . Free-space optical fibre ribbon switch for the use in storage area networks. IEE Proc. Optoelectron. , 285 - 291
    2. 2)
      • Zhang, F.: `Free-space optical fibre ribbon switch for storage area networks', 2006, PhD, Cambridge University.
    3. 3)
      • M. Schwab , N. Lindlein , J. Schwider , Y. Amitai , A.A. Friesem , S. Reinhorn . Compensation of the wavelength dependence in diffractive star couplers. J. Opt. Soc. Am. A , 1290 - 1297
    4. 4)
      • K.Y. Eng , M.J. Karol , Y.-S. Yeh . A growable packet (ATM) switch architecture: design principles and applications. IEEE Trans. Commun. , 423 - 430
    5. 5)
      • R.W.A. Scarr , J.R. Collington , W.A. Crossland . Highly parallel optics in ATM switching networks. IEE Proc. Optoelectron. , 53 - 60
    6. 6)
      • M.P. Dames , J.R. Collington , W.A. Crossland , R.W. Scarr . Three-stage high performance optoelectronic asynchronous transfer mode switch: design and performance. Opt. Engng. , 3608 - 3616
    7. 7)
      • R.W. Gerchberg , W.O. Saxton . A practical algorithm for the determination of phase from image and diffraction plane pictures. Optik , 237 - 246
    8. 8)
      • D. Wright , P. Greve , J. Fleischer , L. Austin . Laser beam width, divergence and beam propagation factor—an international standardization approach. Opt. Quantum Electron. , 993 - 1000
    9. 9)
      • Crossland, W.A., Mears, R.J., Warr, S.T., Scarr, R.W.A.: `Spatial-light-modulator based routing switches', Proc. of Optical Computing 1994, Institute of Physics Conf. Series 139, 1994, p. 177–182.
    10. 10)
      • ‘Storage Networking 101’, Cisco white paper, http://www.cisco.com.
    11. 11)
      • C.H.M. Fan , W.A. Crossland , T.D. Wilkinson , N. Collings , F. Zhang . SLM reconfiguration time in optically interconnected packet switch. Proc SPIE – Int. Soc. Opt. Engng. , 101 - 110
    12. 12)
      • C.W. Wilmsen , C. Duan , M.P. Dames , J.R. Collington , W.A. Crossland . Vertical cavity surface emitting laser based optoelectronic asynchronous transfer mode switch. Opt. Engng. , 1216 - 1222
    13. 13)
      • T. Lin , K.A. Williams , R.V. Penty , I.H. White , M. Glick , D. McAuley . Performance and scalability of a single-stage SOA switch for 10 Gb/s wavelength striped packet routing. IEEE Photon. Technol. Lett. , 691 - 693
    14. 14)
      • Wilkinson, T.D.: `A guide to creating binary computer generated holograms for FLC SLMs', Technical Report, Cambridge University Engineering Department, 1995.
    15. 15)
      • E. Tajahuerce , V. Climent , J. Lancis , M. Fernández-Alonso , P. Andrés . Achromatic Fourier transforming properties of a separated diffractive lens doublet: theory and experiment. Appl. Opt. , 6164 - 6173
    16. 16)
      • R.F. Fischer . (2000) Optical system design.
    17. 17)
      • G. Keiser . (1984) Optical fiber communications.
    18. 18)
      • H. White , C. Stad , M.J. Birch . (1993) SLM-based optical crossbars based on the matrix-matrix principle.
    19. 19)
      • White, H.J., Proudley, G.M., Stace, C.: `Development of an optical free-space crossbar', Proc. of Optical Computing 1994, Edinburgh, Institute of Physics Conf. Series 139, 1994, p. 183–186.
    20. 20)
      • V.N. Morozov , J.A. Neff , H. Temkin , A.S. Fedor . Analysis of a three-dimensional computer optical scheme based on bidirectional free-space optical interconnects. Opt. Engng. , 523 - 534
    21. 21)
      • Available at http://www.cubo.com.
    22. 22)
      • El-Gorashi, T., Pranggono, B., Elmirghani, J.M.H.: `Multi-wavelength metro DM sectioned ring for SAN extension under hot node scenario and variable traffic profiles', Proc. Eighth Int. Conf. on Transparent Optical Networks, June 2006, Nottingham, p. 139–146.
    23. 23)
      • D.C. O'Brien , G.E. Faulkner , T.D. Wilkinson , B. Robertson , D.G. Leyva . Design and analysis of an adaptive board-to-board dynamic holographic interconnect. Appl. Opt. , 3297 - 3305
    24. 24)
      • A.C. Walker , M.P.Y. Desmulliez , M.G. Forbes . Design and construction of an optoelectronic crossbar switch containing a terabit per second free-space optical interconnect. IEEE J. Sel. Top. Quantum Electron. , 236 - 249
    25. 25)
      • T.D. Wilkinson , W.A. Crossland . Optical routing with liquid crystal arrays. Proc. SPIE – Int. Soc. Opt. Engng. , 64 - 69
    26. 26)
      • Available at http://www.ocp.com.
    27. 27)
      • Available at www.corning.com/docs/specialtymaterials/pisheets/pi101.pdf.
    28. 28)
      • J.W. Goodman . (2005) Introduction to Fourier optics.
    29. 29)
      • W.A. Crossland , M.J.H. Birch , A.B. Davey , D.G. Vass . Active backplane spatial light modulator using chiral smectic liquid crystals. Proc. SPIE – Int. Soc. Opt. Engng. , 114 - 127
    30. 30)
      • J. Tate , F. Lucchese , R. Moore . Introduction to storage area networks.
    31. 31)
      • G.P. Agrawal . (2005) Lightwave technology telecommunication system.
    32. 32)
      • Nortel Networks: ‘Storage connectivity: a guide to storage networks and their optical extension across the metropolitan area’, http://www.nortelnetworks.com.
    33. 33)
      • G.I. Stegeman , A. Miller . (1993) Photonics in switching.
    34. 34)
      • Available at http://www.omron.com/ecb/products/opt/12ch-f.html.
    35. 35)
      • S. Kirkpatrick , C.D. Gelatt , M.P. Vecchi . Optimization by simulated annealing. Science , 671 - 680
    36. 36)
      • Available at http://www.apacoe.com.tw.
    37. 37)
      • Tee, C.A.T.H.: `A reconfigurable VCSEL based very high speed and capacity photonic packet switch', December 2000, PhD, Cambridge University.
    38. 38)
      • A.E. Siegman . (1986) Lasers.
    39. 39)
      • ITU-T Recommendation G.694.2: ‘Spectral grids for WDM applications: WDM frequency grid’, June 2002.
    40. 40)
      • W.A. Crossland , I.G. Manolis , M.M. Redmond . Holographic optical switching: the “Roses” demonstrator. J. Lightwave Technol. , 1845 - 1854
    41. 41)
      • T.D. Wilkinson , W.A. Crossland , N. Collings , F. Zhang , M. Fan . Reconfigurable free-space optical cores for storage area networks. IEEE Commun. Mag. , 93 - 99
    42. 42)
      • H. Xu , A.B. Davey , T.D. Wilkinson , W.A. Crossland . A simple method of optically enhancing the small electrooptic response of liquid crystals. Appl. Phys. Lett. , 3099 - 3101
    43. 43)
      • Available at http://www.ntt-at.com/products_e/tecfiber/index.html.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-opt.2009.0044
Loading

Related content

content/journals/10.1049/iet-opt.2009.0044
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading