Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Particle swarm optimisation with grey wolf optimisation for optimal container resource allocation in cloud

In the cloud sector, as the applications used by users are exploited via micro-service pattern, the container allocation seems to be the most vital process. This has further been concentrated with more care for its beneficiary acts like easier employment, limited overheads and higher portability. For the past few decades, various contributions have been made under the container management and allocation as well. Under these circumstances, this study intends to design an optimal resource allocation and management model by incorporating the concept of optimisation, which guarantees optimal container allocation. To make this possible, this study establishes a novel hybrid algorithm, namely velocity-updated grey wolf optimisation (VU-GWO), which is the hybridisation of two renowned algorithms particle swarm optimisation and grey wolf optimization, respectively. More importantly, the solution of optimised resource allocation is influenced by the designing of a novel objective function, which concerns the constraints like balanced cluster use, threshold distance, system failure, and total network distance as well. At last, the performance of the presented scheme is evaluated over other traditional schemes, and the betterment of the proposed model is validated.

References

    1. 1)
      • 21. Kaur, K., Dhand, T., Kumar, N., et al: ‘Container-as-a-service at the edge: trade-off between energy efficiency and service availability at fog Nano data centers’, IEEE Wirel. Commun., 2017, 24, (3), pp. 4856.
    2. 2)
      • 12. Kim, N.Y., Ryu, J.H., Kwon, B.W., et al: ‘CF-CloudOrch: container fog node-based cloud orchestration for IoT networks’, J. Supercomput., 2018, 74, (12), pp. 70247045.
    3. 3)
      • 27. Adhikari, M., Srirama, S.N.: ‘Multi-objective accelerated particle swarm optimization with a container-based scheduling for Internet-of-Things in cloud environment’, J. Netw. Comput. Appl., 2019, 137, pp. 3561.
    4. 4)
      • 25. Agarwal, A., Agarwal, K.: ‘The next generation mobile wireless cellular networks–4G and beyond’, Am. J. Electr. Electron. Eng., 2014, 2, (3), pp. 9297.
    5. 5)
      • 32. McCall, J.: ‘Genetic algorithms for modelling and optimisation’, J. Comput. Appl. Math., 2005, 184, (1), pp. 205222.
    6. 6)
      • 23. Wagh, M.B., Gomathi, N.: ‘Optimal route selection for vehicular ad hoc networks using lion algorithm’, J. Eng. Res., 2019, 7, (3).
    7. 7)
      • 5. Yin, L., Luo, J., Luo, H.: ‘Tasks scheduling and resource allocation in fog computing based on containers for smart manufacturing’, IEEE Trans. Ind. Inf., 2018, 14, (10), pp. 47124721.
    8. 8)
      • 19. Li, L., Deng, N., Ren, W., et al: ‘Multi-service resource allocation in future network with wireless virtualization’, IEEE Access, 2018, 6, pp. 5385453868.
    9. 9)
      • 24. Wang, C., Liang, C., Yu, F.R., et al: ‘Computation offloading and resource allocation in wireless cellular networks with mobile edge computing’, IEEE Trans. Wirel. Commun., 2017, 16, (8), pp. 49244938.
    10. 10)
      • 29. Koulouzis, S., Martin, P., Zhou, H., et al: ‘Time-critical data management in clouds: challenges and a dynamic real-time infrastructure planner (DRIP) solution’, Concurrency Comput., Pract. Exp., 2019, p. e5269.
    11. 11)
      • 17. Pham, C., Estrada, Z.J., Cao, P., et al: ‘Building reliable and secure virtual machines using architectural invariants’, IEEE Secur. Priv., 2014, 12, (5), pp. 8285.
    12. 12)
      • 31. Mirjalili, S., Mirjalili, S.M., Lewis, A.: ‘Grey wolf optimizer’, Adv. Eng. Softw., 2014, 69, pp. 4661.
    13. 13)
      • 16. Linthicum, D.S.: ‘Cloud-native applications and cloud migration: the good, the bad, and the points between’, IEEE Cloud Comput., 2017, 4, (5), pp. 1214.
    14. 14)
      • 2. Benedictis, M.D., Lioy, A.: ‘Integrity verification of Docker containers for a lightweight cloud environment’, Future Gener. Comput. Syst., 2019, 97, pp. 236246.
    15. 15)
      • 34. Mirjalili, S., Lewis, A.: ‘The whale optimization algorithm’, Adv. Eng. Softw., 2016, 95, pp. 5167.
    16. 16)
      • 14. Abolfazli, S., Sanaei, Z., Alizadeh, M., et al: ‘An experimental analysis on cloud-based mobile augmentation in mobile cloud computing’, IEEE Trans. Consum. Electron., 2014, 60, (1), pp. 146154.
    17. 17)
      • 15. De Alfonso, C., Calatrava, A., Moltó, G.: ‘Container-based virtual elastic clusters’, J. Syst. Softw., 2017, 127, pp. 111.
    18. 18)
      • 3. Liu, D., Sui, X., Li, L., et al: ‘A cloud service adaptive framework based on reliable resource allocation’, Future Gener. Comput. Syst., 2018, 89, pp. 455463.
    19. 19)
      • 7. Salza, P., Ferrucci, F.: ‘Speed up genetic algorithms in the cloud using software containers’, Future Gener. Comput. Syst., 2019, 92, pp. 276289.
    20. 20)
      • 20. Adam, O., Lee, Y.C., Zomaya, A.Y.: ‘Stochastic resource provisioning for containerized multi-tier web services in clouds’, IEEE Trans. Parallel Distrib. Syst., 2017, 28, (7), pp. 20602073.
    21. 21)
      • 18. Netto, H.V., Lung, L.C., Correia, M., et al: ‘State machine replication in containers managed by Kubernetes’, J. Syst. Archit., 2017, 73, pp. 5359.
    22. 22)
      • 30. Zhang, J., Xia, P.: ‘An improved PSO algorithm for parameter identification of nonlinear dynamic hysteretic models’, J. Sound Vib., 2017, 389, pp. 153167.
    23. 23)
      • 22. Madasamy, B., Balasubramanian, P.: ‘Geographical angular zone-based optimal resource allocation and efficient routing protocols for vehicular ad hoc networks’, IET Intell. Transp. Syst., 2017, 12, (3), pp. 242250.
    24. 24)
      • 33. Boothalingam, R.: ‘Optimization using lion algorithm: a biological inspiration from lion's social behavior’, Evol. Intell., 2018, 11, (1–2), pp. 3152.
    25. 25)
      • 35. Vhatkar, K.N., Bhole, G.P.: ‘Optimal container resource allocation in cloud architecture: a new hybrid model’, J. King Saud University-Comput. Inf. Sci., 2019.
    26. 26)
      • 28. Stefanic, P., Cigale, M., Jones, A.C., et al: ‘SWITCH workbench: a novel approach for the development and deployment of time-critical microservice-based cloud-native applications’, Future Gener. Comput. Syst., 2019, 99, pp. 197212.
    27. 27)
      • 4. Guan, X., Wan, X., Choi, B., et al: ‘Application oriented dynamic resource allocation for data centers using Docker containers’, IEEE Commun. Lett., 2017, 21, (3), pp. 504507.
    28. 28)
      • 6. Guerrero, C., Lera, I., Juiz, C.: ‘Genetic algorithm for multi-objective optimization of container allocation in cloud architecture’, J. Grid Comput., 2018, 16, (1), pp. 113135.
    29. 29)
      • 9. Tang, X., Zhang, F., Li, X., et al: ‘Quantifying cloud elasticity with container-based autoscaling’, Future Gener. Comput. Syst., 2019, 98, pp. 672681.
    30. 30)
      • 13. Louati, T., Abbes, H., Cérin, C.: ‘LXCloudFT: towards high availability, fault tolerant cloud system based Linux Containers’, J. Parallel Distrib. Comput., 2018, 122, pp. 5169.
    31. 31)
      • 1. Mavridis, I., Karatza, H.: ‘Combining containers and virtual machines to enhance isolation and extend functionality on cloud computing’, Future Gener. Comput. Syst., 2019, 94, pp. 674696.
    32. 32)
      • 10. Boukadi, K., Grati, R., Rekik, M., et al: ‘Business process outsourcing to cloud containers: how to find the optimal deployment?’, Future Gener. Comput. Syst., 2019, 97, pp. 397408.
    33. 33)
      • 26. Vhatkar, K.N., Bhole, G.P.: ‘Optimal container resource allocation in cloud architecture: a new hybrid model’, J. King Saud Univ., Comput. Inf. Sci., 2019.
    34. 34)
      • 11. Mondesire, S.C., Angelopoulou, A., Sirigampola, S., et al: ‘Combining virtualization and containerization to support interactive games and simulations on the cloud’, Simul. Modelling Pract. Theory, 2019, 93, pp. 233244.
    35. 35)
      • 8. Stelly, C., Roussev, V.: ‘SCARF: a container-based approach to cloud-scale digital forensic processing’, Digit. Invest., 2017, 22, pp. S39S47.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-net.2019.0157
Loading

Related content

content/journals/10.1049/iet-net.2019.0157
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address