Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Automatic extraction of Uyghur domain concepts based on multi-feature for ontology extension

In the internet age, as a conceptual model of knowledge organisation, ontology has become a research hotspot. Ontology extension achieves the purpose of expanding ontology by adding new concepts and discovering the relationships between concepts in the existing ontology. In order to improve the automation and accuracy of ontology concept extraction in the Uyghur language, here the authors propose a new method to automatically extract concepts from text collection. For the characteristics of the Uyghur domain ontology concept, the text preprocessing is performed first, then the inter-word correlation of multi-feature fusion is calculated, such as Mi, Cd and Ea, and finally, the domain terminology and concept are automatically extracted, according to the term frequency–inverse document frequency algorithm. Experiment results show that, in terms of precision and recall rate, the multi-feature method proposed here represents an improvement over other methods. It also proves the feasibility and effectiveness of the authors’ method to extract the domain concept.

References

    1. 1)
      • 23. Santra, D., Basu, S.K., Mandal, J.K., et al: ‘Rough set based lattice structure for knowledge representation in medical expert systems: low back pain management case study’, Expert Syst. Appl., 2020, 145, (0), pp. 131.
    2. 2)
      • 11. Haitao, H., Shanhong, Z., Wanlong, L.: ‘Research on domain ontology concept extraction based on association rules and semantic rules’, J. Jilin Univ. Inf. Sci. Ed., 2014, 32, (6), pp. 657663.
    3. 3)
      • 8. Wenliang, C., Jingbo, Z., Tianshun, Y.: ‘Automatically extraction of domain vocabulary based on bootstrapping’ (Tsinghua University Press, China, 2003), pp. 6772.
    4. 4)
      • 2. Fang, W., Changxuan, W.: ‘Chinese integrated word identification based on confidence’, J. Chin. Inf. Process., 2009, 23, (3), pp. 1723.
    5. 5)
      • 21. Weitong, L., Peiyu, L., Wenfeng, L., et al: ‘New word discovery algorithm based on mutual information and branch entropy’, Appl. Res. Comput., 2018, 36, (5), pp. 12931296.
    6. 6)
      • 30. Wan, Z., Xiong, N., Ghani, N.: ‘Adaptive unequal protection for wireless video transmission over IEEE 802.11 e networks’, Multimedia Tools Appl., 2014, 72, (1), pp. 541571.
    7. 7)
      • 33. Fan, Y.: ‘Domain ontology construction method and empirical research – taking the field of surveying and mapping as an example’ (Wuhan University Press, China, 2015).
    8. 8)
      • 17. Wang, Y., Vasilakos, A.V., Ma, J., et al: ‘On studying the impact of uncertainty on behavior diffusion in social networks’, IEEE Trans. Syst. Man Cybern. Syst., 2014, 45, (2), pp. 185197.
    9. 9)
      • 28. Rice, C.A., Tokowicz, N., Fraundorf, S.H., et al: ‘The complex interactions of context availability, polysemy, word frequency, and orthographic variables during lexical processing’, Mem. Cognit., 2019, 47, (7), pp. 12971313.
    10. 10)
      • 24. Cong, Y., Chan, Y.-B., Ragan, M.A..: ‘A novel alignment-free method for detection of lateral genetic transfer based on TF-IDF’, 2016, 6, (25), pp. 112.
    11. 11)
      • 7. Hofmann, T.: ‘Probabilistic latent semantic indexing’. ACM SIGIR forum, 2017, 51, (2), pp. 211218.
    12. 12)
      • 20. He, R., Xiong, N., Yang, L.T., et al: ‘Using multi-modal semantic association rules to fuse keywords and visual features automatically for web image retrieval’, Inf. Fusion, 2010, 12, (3), pp. 223230.
    13. 13)
      • 1. Zhou, Y., Zhang, L., Niu, S.: ‘The research of concept extraction in ontology extension based on extended association rules’. 2016 IEEE Int. Conf. of Online Analysis and Computing Science (ICOACS), Chongqing, China, 2016, pp. 130133.
    14. 14)
      • 15. Yilahun, H., Imam, S., Hamdulla, A.: ‘A mixed method for building the Uyghur and Chinese domain ontology’. China Conf. on Knowledge Graph and Semantic Computing (CCKS2016), Beijing, 2016, pp. 150157.
    15. 15)
      • 12. Lim, H., Kim, D.-W.: ‘MFC: initialization method for multi-label feature selection based on conditional mutual information’, Neurocomputing, 2020, 382, pp. 4051.
    16. 16)
      • 14. Yilahun, H., Imam, S., Hamdulla, A.: ‘A survey on Uyghur ontology’, Int. J. Database Theory Appl., 2015, 8, (4), pp. 157168.
    17. 17)
      • 5. Jiang, D., Zhang, P., Lv, Z., et al: ‘Energy-efficient multi-constraint routing algorithm with load balancing for smart city applications’, IEEE Internet Things J., 2016, 3, (6), pp. 14371447.
    18. 18)
    19. 19)
      • 18. Xiong, N., Han, W.A.: ‘Vandenberg, Green cloud computing schemes based on networks a survey’, IET Commun., 2011, 6, (18), pp. 32943300.
    20. 20)
      • 29. Song, J., Hu, R., Sun, B., et al: ‘Research on news keyword extraction based on TF-IDF and Chinese features’. 2nd Int. Conf. on Financial Management, Education and Social Science (FMESS 2019), Hohhot, Inner Mongolia, China, July 2019, pp. 344352.
    21. 21)
      • 25. Rao, G., Li, Y.: ‘TF-IDF based lexical hierarchy division of diachronic distribution’, J. Chin. Inf. Process., 2019, 33, (11), pp. 3138.
    22. 22)
      • 13. Lang, Z., Shumin, S., Chonghuang, F.: ‘Chinese term extraction method based on multi-strategy fusion’, 2010, 29, (3), pp. 460467.
    23. 23)
      • 19. Zeng, Y., Sreenan, C.J., Xiong, N., et al: ‘Connectivity and coverage maintenance in wireless sensor networks’, J. Supercomput., 2010, 52, (1), pp. 2346.
    24. 24)
      • 4. Yilahun, H., Abdurahman, K., Imam, S., et al: ‘Wordnet for Uyghur language – UWN’. Int. Committee for the Co-ordination and Standardization of Speech Databases and Assessment Techniques (OCOCOSDA2017), Seoul, 2017.
    25. 25)
      • 9. Jiaheg, Z., Jiaoli, L.: ‘Research on keyword extraction method’, J. Comput. Eng., 2005, 18, (0), pp. 194196.
    26. 26)
      • 26. Yang, Y., Xiong, N., Chong, N.Y.: ‘A decentralized and adaptive flocking algorithm for autonomous mobile robots’. The 3rd Grid and Pervasive Computing Workshops (GPC Workshops’ 08), Kunming, China, 2008.
    27. 27)
      • 22. Peters, M.E., Neumann, M., Iyyer, M., et al: ‘Deep contextualized word representations’. Proc. of NAACL-HLT 2018, New Orleans, Louisiana, 2018, pp. 22272237.
    28. 28)
      • 32. Yin, J., Lo, W., Deng, S., et al: ‘A collaborative location-based regularization framework for QoS prediction’, Inf. Sci., 2013, 265, pp. 6884.
    29. 29)
      • 16. Wang, L.-L., Wang, H.-Q., Cheng, Y.-Q.: ‘A novel SINR and mutual information based on radar jamming technique’, J. Central South Univ., 2013, 20, (12), pp. 34713480.
    30. 30)
      • 31. He, W., Yang, X.: ‘Extending ontology based on semantic relatedness between words from a text’, Comput. Appl. Softw., 2011, 11, (0), pp. 13161320.
    31. 31)
      • 3. Jiang, D., Huo, L., Li, Y.: ‘Fine-granularity inference and estimations to network traffic for SDN’, Plos One, 2018, 13, (5), pp. 123.
    32. 32)
      • 6. Maosong, S., Ming, X., Tsou, B.K.: ‘Chinese word segmentation without using dictionary based on unsupervised learning strategy’, Chin. J. Comput., 2004, 27, (6), pp. 736742.
    33. 33)
      • 10. Fang, W., Li, Y., Zhang, H., et al: ‘On the throughput-energy tradeoff for data transmission between cloud and mobile devices’, Inf. Sci., 2014, 283, (0), pp. 7993.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-net.2018.5240
Loading

Related content

content/journals/10.1049/iet-net.2018.5240
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address