http://iet.metastore.ingenta.com
1887

Optimising the power using firework-based evolutionary algorithms for emerging IoT applications

Optimising the power using firework-based evolutionary algorithms for emerging IoT applications

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Networks — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Optimising the overall power in a cluster-assisted internet of things (IoT) network is a challenging problem for emerging IoT applications. In this study, the authors propose a mathematical model for the cluster-assisted IoT network. The cluster-assisted IoT network consists of three types of nodes: IoT nodes, core cluster nodes (CCNs) and base stations (BSs). The objective is to minimise transmission, between IoT nodes (IoTs)–CCNs and CCNs–BSs, and computational power (at CCNs), while satisfying the requirements of communicating nodes. The formulated mathematical model is a integer programming problem. They propose three swarm intelligence-based evolutionary algorithms: (i) a discrete fireworks algorithm (DFWA), (ii) a load-aware DFWA (L-DFWA), and (iii) a hybrid of the L-DFWA and the low-complexity biogeography-based optimisation algorithm to solve the optimisation problem. The proposed algorithms are population-based metaheuristic algorithms. They perform extensive simulations and statistical tests to show the performance of the proposed algorithms when compared with the existing ones.

http://iet.metastore.ingenta.com/content/journals/10.1049/iet-net.2018.5041
Loading

Related content

content/journals/10.1049/iet-net.2018.5041
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address