access icon free Learning automaton-based self-protection algorithm for wireless sensor networks

Wireless sensor networks (WSNs) have been widely used for many applications such as surveillance and security applications. Every simple sensor in a WSN plays a critical role and it has to be protected from any attack and failure. The self-protection of WSNs focuses on using sensors to protect themselves to resist against attacks targeting them. Therefore, it is necessary to provide a certain level of protection to each sensor. The authors propose an irregular cellular learning automaton (ICLA)-based algorithm, which is called SPLA, to preserve sensors protection. Learning automaton at each cell of ICLA with proper rules aims at investigating the minimum possible number of nodes in order to guarantee the self-protection requirements of the network. To evaluate the performance of SPLA, several simulation experiments were carried out and the obtained results show that SPLA performs on average of 50% better than maximum independent set and minimum connected dominating set algorithms in terms of active node ratio and can provide two times reduction in energy consumption.

Inspec keywords: learning automata; telecommunication security; telecommunication power management; wireless sensor networks; power consumption

Other keywords: self-protection requirements; sensors protection; self-protection algorithm; energy consumption; ICLA; surveillance applications; security applications; WSN; SPLA; wireless sensor networks; irregular cellular learning automaton

Subjects: Wireless sensor networks; Telecommunication systems (energy utilisation)

References

    1. 1)
      • 24. Asnaashari, M., Meybodi, M.R.: ‘Irregular cellular learning automata and its application to clustering in sensor networks’. Proc. 15th Conf. Electrical Engineering (15th ICEE), Volume on Communication, Telecommunication Research Center, Tehran, Iran, 2007.
    2. 2)
      • 12. Zhang, W.: ‘Layered negotiation-based self-protection for wireless sensor networks’ (Springer Berlin Heidelberg, Berlin, Heidelberg, 2015), pp. 302310.
    3. 3)
      • 18. Neggazi, B., Haddad, M., Turau, V., et al: ‘A self-stabilizing algorithm for edge monitoring in wireless sensor networks’, Inf. Comput., 2017, 254, (Part 3), pp. 367376.
    4. 4)
      • 22. Wolfram, S.: ‘Statistical mechanics of cellular automata’, Rev. Mod. Phys., 1983, 55, (3), p. 601.
    5. 5)
      • 14. Wang, D., Zhang, Q., Liu, J.: ‘The self-protection problem in wireless sensor networks’, ACM Trans. Sen. Netw., 2007, 3, (4).
    6. 6)
      • 30. Calle, M., Kabara, J.: ‘Measuring energy consumption in wireless sensor networks using GSP’. IEEE 17th Int. Symp. Personal, Indoor and Mobile Radio Communications. IEEE, Helsinki, Finland, 2006, pp. 15.
    7. 7)
      • 13. Wang, D., Zhang, Q., Liu, J.: ‘Self-protection for wireless sensor networks’. Distributed Computing Systems, 2006. ICDCS 2006. 26th IEEE Int. Conf., Lisboa, Portugal, 2006, pp. 6767.
    8. 8)
      • 10. Munir, A., Antoon, J., Gordon-Ross, A.: ‘Modeling and analysis of fault detection and fault tolerance in wireless sensor networks’, ACM Trans. Embed. Comput. Syst., 2015, 14, (1), pp. 3:13:43.
    9. 9)
      • 17. Dong, D., Liao, X., Liu, Y., et al: ‘Edge self-monitoring for wireless sensor networks’, IEEE Trans. Parallel Distrib. Syst., 2011, 22, (3), pp. 514527.
    10. 10)
      • 20. Obaidat, M.S., Papadimitriou, G.I., Pomportsis, A.S.: ‘Guest editorial learning automata: theory, paradigms, and applications’, IEEE Trans. Syst. Man Cybern. B, 2002, 32, (6), pp. 706709.
    11. 11)
      • 8. Bagci, H., Korpeoglu, I., Yazici, A.: ‘A distributed fault-tolerant topology control algorithm for heterogeneous wireless sensor networks’, IEEE Trans. Parallel Distrib. Syst., 2015, 26, (4), pp. 914923.
    12. 12)
      • 1. Obaidat, M., Misra, S.: ‘Principles of wireless sensor networks’ (Cambridge University Press, Cambridge, 2014).
    13. 13)
      • 3. Wang, B.: ‘Coverage problems in sensor networks: a survey’, ACM Comput. Surv., 2011, 43, (4), pp. 153.
    14. 14)
      • 21. Beigy, H., Meybodi, M.R.: ‘A mathematical framework for cellular learning automata’, Adv. Complex Syst., 2004, 7, (03n04), pp. 295319.
    15. 15)
      • 7. Soro, S., Heinzelman, W.: ‘A survey of visual sensor networks’, Adv. Multimedia, 2009, 2009, pp. 121.
    16. 16)
      • 9. Wang, Z., Chen, H., Cao, Q., et al: ‘Fault tolerant barrier coverage for wireless sensor networks’. INFOCOM, 2014 Proc. IEEE, Toronto, ON, Canada, April 2014, pp. 18691877.
    17. 17)
      • 19. Narendra, K.S., Thathachar, M.A.L.: ‘Learning automata: an introduction’ (Prentice Hall, Upper Saddle River, NJ, USA, 1989).
    18. 18)
      • 5. Zheng, J., Jamalipour, A.: ‘Wireless sensor networks: a networking perspective’ (John Wiley & Sons, Hoboken, New Jersey, 2009).
    19. 19)
      • 28. Newman, M.E.J.: ‘Random graphs as models of networks’, in Bornholdt, S., Schuster, H.G. (Eds.): ‘Handbook of graphs, networks: from the genome to the internet’ (Wiley Online Library, 2006), pp. 3568, 2005.
    20. 20)
      • 4. Mainetti, L., Patrono, L., Vilei, A.: ‘Evolution of wireless sensor networks towards the internet of things: A survey’. SoftCOM 2011, 19th Int. Conf. Software, Telecommunications and Computer Networks, Split, Croatia, September 2011, pp. 16.
    21. 21)
      • 15. Johnson, D.S.: ‘Approximation algorithms for combinatorial problems’, J. Comput. Syst. Sci., 1974, 9, (3), pp. 256278.
    22. 22)
      • 6. Wang, Y., Li, X.-Y., Zhang, Q.: ‘Efficient algorithms for p-self-protection problem in static wireless sensor networks’, IEEE Trans. Parallel Distrib. Syst., 2008, 19, (10), pp. 14261438.
    23. 23)
      • 29. Available at www.djstein.com/Projects/Files/Wireless%20Sensor%20Network%20Simulator%20v1.1.zip.
    24. 24)
      • 25. Torkestani, J.A., Meybodi, M.R.: ‘Clustering the wireless ad hoc networks: a distributed learning automata approach’, J. Parallel Distrib. Comput., 2010, 70, (4), pp. 394405.
    25. 25)
      • 2. Mostafaei, H., Montieri, A., Persico, V., et al: ‘A sleep scheduling approach based on learning automata for WSN partial coverage’, J. Netw. Comput. Appl., 2017, 80, pp. 6778.
    26. 26)
      • 11. Mostafaei, H., Chowdhurry, M., Obaidat, M.: ‘Border surveillance with WSN systems in a distributed manner’, IEEE Syst. J., 2018.
    27. 27)
      • 23. Esnaashari, M., Meybodi, M.R.: ‘Irregular cellular learning automata’, IEEE Trans. Cybern., 2015, 45, (8), pp. 16221632.
    28. 28)
      • 26. Donghyun, K., Yiwei, W., Yingshu, L., et al: ‘Constructing minimum connected dominating sets with bounded diameters in wireless networks’, IEEE Trans. Parallel Distrib. Syst., 2009, 20, (2), pp. 147157.
    29. 29)
      • 27. Wang, Y., Li, X.-Y.: ‘Geometric spanners for wireless ad hoc networks’. Proc. 22nd Int. Conf. Distributed Computing Systems, Vienna, Austria, July 2002, pp. 171178.
    30. 30)
      • 16. Cheng, J., Zhang, W., Yang, J.: ‘Local optimum algorithms for self-protection in wireless sensor networks’. Mobile Ad-hoc and Sensor Networks, 2009. MSN'09. 5th Int. Conf., Fujian, China, December 2009, pp. 5761.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-net.2018.0005
Loading

Related content

content/journals/10.1049/iet-net.2018.0005
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading