access icon free Multi-stage resource allocation in hybrid 25G-EPON and LTE-Advanced Pro FiWi networks for 5G systems

The 5G vision is not restricted solely to the wireless domain and its challenging requirements cannot be fulfilled without the efficient integration of cutting-edge technologies in all portions of the telecommunications infrastructure. The promoted architectures for next generation telecommunications systems involve high capacity network domains, which operate flexibly and seamlessly to offer full quality of experience to all types of subscribers. The proliferation of highly demanding multimedia services and the features of modern communication devices necessitate the development of end-to-end schemes which can efficiently distribute large amount of network resources anywhere and whenever needed. This study introduces a new resource allocation scheme for cutting-edge fibre-wireless networks is introduced that can be applied in the fronthaul portion of 5G-enabled architectures. The adopted technologies are the forthcoming 25G-Ethernet Passive Optical Network (EPON) for the optical domain and the 5G-ready long-term evolution -Advanced Pro for the wireless domain. The proposed scheme performs allocation decisions based on the outcome of an adjustable multi-stage optimisation problem. The optimisation factors are directly related to the major considerations in bandwidth distribution, namely priority-based traffic differentiation, power awareness, and fairness provision. The conducted evaluations prove that this approach is able to ensure high efficiency in network operations.

Inspec keywords: optical fibre networks; bandwidth allocation; next generation networks; multimedia communication; Long Term Evolution; 5G mobile communication; quality of service; resource allocation; optical fibre LAN

Other keywords: next generation telecommunications systems; bandwidth distribution; multimedia services; modern communication devices; high capacity network domains; long-term evolution; hybrid 25G-EPON; advanced Pro FiWi networks; telecommunications infrastructure; quality of experience; 5G-enabled architectures; multistage resource allocation; optical domain; wireless domain; multistage optimisation problem; cutting-edge fibre-wireless networks

Subjects: Multimedia; Mobile radio systems; Subscriber loops; Local area networks; Computer communications; Optical fibre networks; Multimedia communications; Communication network design, planning and routing

References

    1. 1)
      • 22. Liu, J., Guo, H., Nishiyama, H., et al: ‘New perspectives on future smart FiWi networks: scalability, reliability, and energy efficiency’, IEEE Commun. Surv. Tutor., 2016, 18, (2), pp. 10451072.
    2. 2)
      • 5. IEEE: ‘802.16m-2011 – IEEE standard for local and metropolitan area networks part 16: air interface for broadband wireless access systems amendment 3: advanced air interface’, 2011. Available at: https://standards.ieee.org/findstds/standard/802.16m-2011.html.
    3. 3)
      • 13. Martinez, A., Polo, V., Marti, J.: ‘Simultaneous baseband and rf optical modulation scheme for feeding wireless and wireline heterogeneous access networks’, IEEE Trans. Microw. Theory Tech., 2001, 49, (10), pp. 20182024.
    4. 4)
      • 23. Bai, X., Shami, A., Assi, C.: ‘On the fairness of dynamic bandwidth allocation schemes in ethernet passive optical networks’, Comput. Commun., 2006, 29, (11), pp. 21232135. Available at: http://www.sciencedirect.com/science/article/pii/S0140366406000144.
    5. 5)
      • 24. Sarigiannidis, P., Papadimitriou, G., Nicopolitidis, P., et al: ‘Towards a fair and efficient downlink bandwidth distribution in XG-PON frameworks’. Mediterranean Electrotechnical Conf. (MELECON), 2014 17th IEEE, Beirut, Lebanon, 2014, pp. 4953.
    6. 6)
      • 30. Ou, S., Yang, K., Chen, H.H.: ‘Integrated dynamic bandwidth allocation in converged passive optical networks and IEEE 802.16 networks’, IEEE Syst. J., 2010, 4, (4), pp. 467476.
    7. 7)
      • 21. Sharma, N., Bansal, A., Garg, P.: ‘Generalized OSTBC-based subcarrier intensity-modulated MIMO optical wireless communication system’, Int. J. Commun. Syst., 2016, 30, (6).
    8. 8)
      • 2. ITU-T: ‘G.989:40-gigabit-capable passive optical networks (NG-PON2): definitions, abbreviations and acronyms’, 2015. Available at: https://www.itu.int/rec/T-REC-G.989/en.
    9. 9)
      • 28. Zhang, Y.J., Liew, S.C.: ‘Proportional fairness in multi-channel multi-rate wireless networks – Part II: the case of time-varying channels with application to OFDM systems’, Wirel. Commun., IEEE Trans., 2008, 7, (9), pp. 34573467.
    10. 10)
      • 4. IEEE: ‘P802.3ca 100g-EPON task force’, 2017. Available at: http://www.ieee802.org/3/ca/.
    11. 11)
      • 29. Jiang, L., Lei Fu, M., Chun Le, Z.: ‘Hierarchical QOS-aware dynamic bandwidth allocation algorithm for wireless optical broadband access network’. Electronics, Communications and Control (ICECC), 2011 Int. Conf., Ningbo, China, 2011, pp. 43294332.
    12. 12)
      • 16. Shen, G., Tucker, R.S., Chae, C.J.: ‘Fixed mobile convergence architectures for broadband access: integration of EPON and WIMAX [topics in optical communications]’, IEEE Commun. Mag., 2007, 45, (8), pp. 4450.
    13. 13)
      • 32. Yang, K., Ou, S., Guild, K., et al: ‘Convergence of ethernet PON and IEEE 802.16 broadband access networks and its QOS-aware dynamic bandwidth allocation scheme’, IEEE J. Sel. Areas Commun., 2009, 27, (2), pp. 101116.
    14. 14)
      • 8. Rimal, B.P., Van, D.P., Maier, M.: ‘Mobile edge computing empowered fiber-wireless access networks in the 5g era’, IEEE Commun. Mag., 2017, 55, (2), pp. 192200.
    15. 15)
      • 34. Jain, R., Chiu, D.M., Hawe, W.R.: ‘A quantitative measure of fairness and discrimination for resource allocation in shared computer system’ (Eastern Research Laboratory, Digital Equipment Corporation Hudson, MA, 1984).
    16. 16)
      • 14. Wu, J., Zhang, Z., Hong, Y., et al: ‘Cloud radio access network (C-RAN): a primer’, IEEE Netw., 2015, 29, (1), pp. 3541.
    17. 17)
      • 31. Moradpoor, N., Parr, G., McClean, S., et al: ‘{IIDWBA} algorithm for integrated hybrid {PON} with wireless technologies for next generation broadband access networks’, Opt. Switch. Netw., 2013, 10, (4), pp. 439457.
    18. 18)
      • 3. IEEE: ‘802.3av-2009 – IEEE standard for information technology – local and metropolitan area networks – specific requirements – part 3: CSMA/CD access method and physical layer specifications amendment 1: physical layer specifications and management parameters for 10 Gb/s passive optical networks’, 2009. Available at: http://standards.ieee.org/findstds/standard/802.3av-2009.html.
    19. 19)
      • 12. Kamisaka, T., Kuri, T., Kitayama, K.: ‘Simultaneous modulation and fiber-optic transmission of 10-gb/s baseband and 60-GHz-band radio signals on a single wavelength’, IEEE Trans. Microw. Theory Tech., 2001, 49, (10), pp. 20132017.
    20. 20)
      • 19. Ali, M.A., Ellinas, G., Erkan, H., et al: ‘On the vision of complete fixed-mobile convergence’, J. Lightwave Technol., 2010, 28, (16), pp. 23432357. Available at: http://jlt.osa.org/abstract.cfm?URI=jlt-28-16-2343.
    21. 21)
      • 9. 3GPP: ‘TS 23.203 v15.0.0 – technical specification group services and system aspects; policy and charging control architecture (Release 15)’, 2017.
    22. 22)
      • 25. Sarigiannidis, P., Papadimitriou, G., Nicopolitidis, P., et al: ‘Ifaistos: a fair and flexible resource allocation policy for next-generation passive optical networks’. Ultra Modern Telecommunications and Control Systems and Workshops (ICUMT), 2014 6th Int. Congress on, St. Petersburg, Russia, 2014, pp. 714.
    23. 23)
      • 15. Sarkar, S., Dixit, S., Mukherjee, B.: ‘Hybrid wireless-optical broadband-access network (WOBAN): a review of relevant challenges’, J. Lightwave Technol., 2007, 25, (11), pp. 33293340.
    24. 24)
      • 11. 3GPP: ‘TS 36.213 v14.4.0 – technical specification group radio access network; evolved universal terrestrial radio access (E-UTRA); physical layer procedures (Release 14)’, 2017.
    25. 25)
      • 26. Algur, S.P., Kumar, N.P.: ‘Novel user centric, game theory based bandwidth allocation mechanism in WIMAX’, Human-Centric Comput. Inf. Sci., 2013, 3, (1), p. 20.
    26. 26)
      • 20. Sarigiannidis, A.G., Iloridou, M., Nicopolitidis, P., et al: ‘Architectures and bandwidth allocation schemes for hybrid wireless-optical networks’, IEEE Commun. Surv. Tutor., 2015, 17, (1), pp. 427468.
    27. 27)
      • 17. Ahmed, A., Shami, A.: ‘A new bandwidth allocation algorithm for EPON-WIMAX hybrid access networks’. 2010 IEEE Global Telecommunications Conf. GLOBECOM 2010, Miami, FL, USA, 2010, pp. 16.
    28. 28)
      • 6. 3GPP: ‘Release 13 analytical view’, 2015. RP-151569. Available at: http://www.3gpp.org/release-13.
    29. 29)
      • 7. 3GPP: ‘Release 15’. 2017. Available at: http://www.3gpp.org/release-15.
    30. 30)
      • 10. Kramer, G., Mukherjee, B., Dixit, S., et al: ‘Supporting differentiated classes of service in Ethernet passive optical networks’, J. Opt. Netw., 2002, 1, (8), pp. 280298. Available at: https://www.osapublishing.org/abstract.cfm?uri=jon-1-8-280.
    31. 31)
      • 1. ITU-T: ‘G.987–10-gigabit-capable passive optical network (XG-PON) systems: definitions, abbreviations and acronyms’, 2012. Available at: https://www.itu.int/rec/T-REC-G.987/en.
    32. 32)
      • 27. Liew, S.C., Zhang, Y.J.: ‘Proportional fairness in multi-channel multi-rate wireless networks – Part I: the case of deterministic channels with application to AP association problem in large-scale wlan’, Wirel. Commun., IEEE Trans., 2008, 7, (9), pp. 34463456.
    33. 33)
      • 18. Giuntini, M., Valenti, A., Matera, F., et al: ‘Quality of service management in hybrid optical-LTE access networks’. 2011 Future Network Mobile Summit, Warsaw, Poland, 2011, pp. 17.
    34. 34)
      • 33. Sarigiannidis, A., Nicopolitidis, P.: ‘Addressing the interdependence in providing fair and efficient bandwidth distribution in hybrid optical-wireless networks’, Int. J. Commun. Syst., 2016, 29, (10), pp. 16581682.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-net.2017.0236
Loading

Related content

content/journals/10.1049/iet-net.2017.0236
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading