Multi-stage resource allocation in hybrid 25G-EPON and LTE-Advanced Pro FiWi networks for 5G systems

Multi-stage resource allocation in hybrid 25G-EPON and LTE-Advanced Pro FiWi networks for 5G systems

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Networks — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

The 5G vision is not restricted solely to the wireless domain and its challenging requirements cannot be fulfilled without the efficient integration of cutting-edge technologies in all portions of the telecommunications infrastructure. The promoted architectures for next generation telecommunications systems involve high capacity network domains, which operate flexibly and seamlessly to offer full quality of experience to all types of subscribers. The proliferation of highly demanding multimedia services and the features of modern communication devices necessitate the development of end-to-end schemes which can efficiently distribute large amount of network resources anywhere and whenever needed. This study introduces a new resource allocation scheme for cutting-edge fibre-wireless networks is introduced that can be applied in the fronthaul portion of 5G-enabled architectures. The adopted technologies are the forthcoming 25G-Ethernet Passive Optical Network (EPON) for the optical domain and the 5G-ready long-term evolution -Advanced Pro for the wireless domain. The proposed scheme performs allocation decisions based on the outcome of an adjustable multi-stage optimisation problem. The optimisation factors are directly related to the major considerations in bandwidth distribution, namely priority-based traffic differentiation, power awareness, and fairness provision. The conducted evaluations prove that this approach is able to ensure high efficiency in network operations.


    1. 1)
      • 1. ITU-T: ‘G.987–10-gigabit-capable passive optical network (XG-PON) systems: definitions, abbreviations and acronyms’, 2012. Available at:
    2. 2)
      • 2. ITU-T: ‘G.989:40-gigabit-capable passive optical networks (NG-PON2): definitions, abbreviations and acronyms’, 2015. Available at:
    3. 3)
      • 3. IEEE: ‘802.3av-2009 – IEEE standard for information technology – local and metropolitan area networks – specific requirements – part 3: CSMA/CD access method and physical layer specifications amendment 1: physical layer specifications and management parameters for 10 Gb/s passive optical networks’, 2009. Available at:
    4. 4)
      • 4. IEEE: ‘P802.3ca 100g-EPON task force’, 2017. Available at:
    5. 5)
      • 5. IEEE: ‘802.16m-2011 – IEEE standard for local and metropolitan area networks part 16: air interface for broadband wireless access systems amendment 3: advanced air interface’, 2011. Available at:
    6. 6)
      • 6. 3GPP: ‘Release 13 analytical view’, 2015. RP-151569. Available at:
    7. 7)
      • 7. 3GPP: ‘Release 15’. 2017. Available at:
    8. 8)
      • 8. Rimal, B.P., Van, D.P., Maier, M.: ‘Mobile edge computing empowered fiber-wireless access networks in the 5g era’, IEEE Commun. Mag., 2017, 55, (2), pp. 192200.
    9. 9)
      • 9. 3GPP: ‘TS 23.203 v15.0.0 – technical specification group services and system aspects; policy and charging control architecture (Release 15)’, 2017.
    10. 10)
      • 10. Kramer, G., Mukherjee, B., Dixit, S., et al: ‘Supporting differentiated classes of service in Ethernet passive optical networks’, J. Opt. Netw., 2002, 1, (8), pp. 280298. Available at:
    11. 11)
      • 11. 3GPP: ‘TS 36.213 v14.4.0 – technical specification group radio access network; evolved universal terrestrial radio access (E-UTRA); physical layer procedures (Release 14)’, 2017.
    12. 12)
      • 12. Kamisaka, T., Kuri, T., Kitayama, K.: ‘Simultaneous modulation and fiber-optic transmission of 10-gb/s baseband and 60-GHz-band radio signals on a single wavelength’, IEEE Trans. Microw. Theory Tech., 2001, 49, (10), pp. 20132017.
    13. 13)
      • 13. Martinez, A., Polo, V., Marti, J.: ‘Simultaneous baseband and rf optical modulation scheme for feeding wireless and wireline heterogeneous access networks’, IEEE Trans. Microw. Theory Tech., 2001, 49, (10), pp. 20182024.
    14. 14)
      • 14. Wu, J., Zhang, Z., Hong, Y., et al: ‘Cloud radio access network (C-RAN): a primer’, IEEE Netw., 2015, 29, (1), pp. 3541.
    15. 15)
      • 15. Sarkar, S., Dixit, S., Mukherjee, B.: ‘Hybrid wireless-optical broadband-access network (WOBAN): a review of relevant challenges’, J. Lightwave Technol., 2007, 25, (11), pp. 33293340.
    16. 16)
      • 16. Shen, G., Tucker, R.S., Chae, C.J.: ‘Fixed mobile convergence architectures for broadband access: integration of EPON and WIMAX [topics in optical communications]’, IEEE Commun. Mag., 2007, 45, (8), pp. 4450.
    17. 17)
      • 17. Ahmed, A., Shami, A.: ‘A new bandwidth allocation algorithm for EPON-WIMAX hybrid access networks’. 2010 IEEE Global Telecommunications Conf. GLOBECOM 2010, Miami, FL, USA, 2010, pp. 16.
    18. 18)
      • 18. Giuntini, M., Valenti, A., Matera, F., et al: ‘Quality of service management in hybrid optical-LTE access networks’. 2011 Future Network Mobile Summit, Warsaw, Poland, 2011, pp. 17.
    19. 19)
      • 19. Ali, M.A., Ellinas, G., Erkan, H., et al: ‘On the vision of complete fixed-mobile convergence’, J. Lightwave Technol., 2010, 28, (16), pp. 23432357. Available at:
    20. 20)
      • 20. Sarigiannidis, A.G., Iloridou, M., Nicopolitidis, P., et al: ‘Architectures and bandwidth allocation schemes for hybrid wireless-optical networks’, IEEE Commun. Surv. Tutor., 2015, 17, (1), pp. 427468.
    21. 21)
      • 21. Sharma, N., Bansal, A., Garg, P.: ‘Generalized OSTBC-based subcarrier intensity-modulated MIMO optical wireless communication system’, Int. J. Commun. Syst., 2016, 30, (6).
    22. 22)
      • 22. Liu, J., Guo, H., Nishiyama, H., et al: ‘New perspectives on future smart FiWi networks: scalability, reliability, and energy efficiency’, IEEE Commun. Surv. Tutor., 2016, 18, (2), pp. 10451072.
    23. 23)
      • 23. Bai, X., Shami, A., Assi, C.: ‘On the fairness of dynamic bandwidth allocation schemes in ethernet passive optical networks’, Comput. Commun., 2006, 29, (11), pp. 21232135. Available at:
    24. 24)
      • 24. Sarigiannidis, P., Papadimitriou, G., Nicopolitidis, P., et al: ‘Towards a fair and efficient downlink bandwidth distribution in XG-PON frameworks’. Mediterranean Electrotechnical Conf. (MELECON), 2014 17th IEEE, Beirut, Lebanon, 2014, pp. 4953.
    25. 25)
      • 25. Sarigiannidis, P., Papadimitriou, G., Nicopolitidis, P., et al: ‘Ifaistos: a fair and flexible resource allocation policy for next-generation passive optical networks’. Ultra Modern Telecommunications and Control Systems and Workshops (ICUMT), 2014 6th Int. Congress on, St. Petersburg, Russia, 2014, pp. 714.
    26. 26)
      • 26. Algur, S.P., Kumar, N.P.: ‘Novel user centric, game theory based bandwidth allocation mechanism in WIMAX’, Human-Centric Comput. Inf. Sci., 2013, 3, (1), p. 20.
    27. 27)
      • 27. Liew, S.C., Zhang, Y.J.: ‘Proportional fairness in multi-channel multi-rate wireless networks – Part I: the case of deterministic channels with application to AP association problem in large-scale wlan’, Wirel. Commun., IEEE Trans., 2008, 7, (9), pp. 34463456.
    28. 28)
      • 28. Zhang, Y.J., Liew, S.C.: ‘Proportional fairness in multi-channel multi-rate wireless networks – Part II: the case of time-varying channels with application to OFDM systems’, Wirel. Commun., IEEE Trans., 2008, 7, (9), pp. 34573467.
    29. 29)
      • 29. Jiang, L., Lei Fu, M., Chun Le, Z.: ‘Hierarchical QOS-aware dynamic bandwidth allocation algorithm for wireless optical broadband access network’. Electronics, Communications and Control (ICECC), 2011 Int. Conf., Ningbo, China, 2011, pp. 43294332.
    30. 30)
      • 30. Ou, S., Yang, K., Chen, H.H.: ‘Integrated dynamic bandwidth allocation in converged passive optical networks and IEEE 802.16 networks’, IEEE Syst. J., 2010, 4, (4), pp. 467476.
    31. 31)
      • 31. Moradpoor, N., Parr, G., McClean, S., et al: ‘{IIDWBA} algorithm for integrated hybrid {PON} with wireless technologies for next generation broadband access networks’, Opt. Switch. Netw., 2013, 10, (4), pp. 439457.
    32. 32)
      • 32. Yang, K., Ou, S., Guild, K., et al: ‘Convergence of ethernet PON and IEEE 802.16 broadband access networks and its QOS-aware dynamic bandwidth allocation scheme’, IEEE J. Sel. Areas Commun., 2009, 27, (2), pp. 101116.
    33. 33)
      • 33. Sarigiannidis, A., Nicopolitidis, P.: ‘Addressing the interdependence in providing fair and efficient bandwidth distribution in hybrid optical-wireless networks’, Int. J. Commun. Syst., 2016, 29, (10), pp. 16581682.
    34. 34)
      • 34. Jain, R., Chiu, D.M., Hawe, W.R.: ‘A quantitative measure of fairness and discrimination for resource allocation in shared computer system’ (Eastern Research Laboratory, Digital Equipment Corporation Hudson, MA, 1984).

Related content

This is a required field
Please enter a valid email address