Performance modelling of a multirate loss system with batched Poisson arrivals under a probabilistic threshold policy

Performance modelling of a multirate loss system with batched Poisson arrivals under a probabilistic threshold policy

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Networks — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

The authors consider a link accommodating batched Poisson arriving calls of different service classes. A batch of generally distributed number of calls arrive to the link at exponentially distributed time-points. Each call is treated separately from the rest, and its acceptance is decided, according to the available link bandwidth (partial batch blocking discipline). For congestion control, if the number of in-service calls of a service class exceeds a threshold (dedicated to the service class), a new call of the same service class is accepted with a probability, dependent on the system state (probabilistic threshold policy). The link is analysed as a multirate loss system, via a reversible Markov chain. The latter leads to a product form solution (PFS) for the steady-state distribution. Based on the PFS, the authors propose models for the accurate determination of time and call congestion probabilities and link utilisation. Comparison against other existing models under the complete sharing or the bandwidth reservation policy reveals the necessity and consistency of the proposed models.


    1. 1)
      • 1. Wolff, R.: ‘Stochastic modelling and the theory of queues’ (Prentice Hall, Englewood Cliffs, NJ, 1989).
    2. 2)
      • 2. Widjaja, I., Roche, H.: ‘Sizing X2 bandwidth for inter-connected eNBs’. Proc. IEEE VTC Fall, Anchorage, Alaska, USA, September 2009.
    3. 3)
      • 3. Moscholios, I., Logothetis, M.: ‘The Erlang multirate loss model with batched Poisson arrival processes under the bandwidth reservation policy’, Comput. Commun., 2010, 33, Suppl. 1, pp. S167S179.
    4. 4)
      • 4. Vardakas, J.: ‘Electric vehicles charging management in communication controlled fast charging stations’. Proc. 19th IEEE CAMAD, Athens, Greece, December 2014.
    5. 5)
      • 5. Li, W., Kouvatsos, D., Fretwell, R.: ‘Towards time domain invariant QoS measures for queues with correlated traffic’, J. Comput. Syst. Sci., 2015, 81, (1), pp. 132144.
    6. 6)
      • 6. Yu, X., Li, W.: ‘Performance modelling and analysis of MapReduce/Hadoop workloads’. Proc. 21st LANMAN, Beijing, China, April 2015.
    7. 7)
      • 7. Moscholios, I., Vassilakis, V., Sarigiannidis, P., et al: ‘An analytical framework in LEO mobile satellite systems servicing batched Poisson traffic’, IET Commun., 2018, 12, (1), pp. 1825.
    8. 8)
      • 8. Stasiak, M., Glabowski, M.: ‘A simple approximation of the link model with reservation by a one-dimensional Markov chain’, Perform. Eval., 2000, 41, (2–3), pp. 195208.
    9. 9)
      • 9. Cruz-Perez, F., Vazquez-Avila, J., Ortigoza-Guerrero, L.: ‘Recurrent formulas for the multiple fractional channel reservation strategy in multi-service mobile cellular networks’, IEEE Commun. Lett., 2004, 8, (10), pp. 629631.
    10. 10)
      • 10. Moscholios, I., Logothetis, M., Nikolaropoulos, P.: ‘Engset multi-rate state-dependent loss models’, Perform. Eval., 2005, 59, (2–3), pp. 247277.
    11. 11)
      • 11. Huang, Q., Ko, K., Iversen, V.: ‘A new convolution algorithm for loss probability analysis in multiservice networks’, Perform. Eval., 2011, 68, (1), pp. 7687.
    12. 12)
      • 12. Moscholios, I., Logothetis, M., Vardakas, J., et al: ‘Congestion probabilities of elastic and adaptive calls in erlang-engset multirate loss models under the threshold and bandwidth reservation policies’, Comput. Netw., 2015, 92, (1), pp. 123.
    13. 13)
      • 13. Borst, S., Mitra, D.: ‘Virtual partitioning for robust resource sharing computational techniques for heterogeneous traffic’, IEEE J. Sel. Areas Commun., 1998, 16, (5), pp. 668678.
    14. 14)
      • 14. Pietrabissa, A.: ‘An alternative LP formulation of the admission control problem in multiclass networks’, IEEE Trans. Automatic Control, 2008, 53, (3), pp. 839845.
    15. 15)
      • 15. Stevens-Navarro, E., Shah-Mansouri, V., Wong, V.: ‘Handoff management and admission control using virtual partitioning with preemption in 3G cellular/802.16e interworking’, IEEE Trans. Veh. Technol., 2010, 59, (1), pp. 431445.
    16. 16)
      • 16. Jarray, A., Quttoum, A., Otrok, H., et al: ‘DDP: a dynamic dimensioning and partitioning model of virtual private networks resources’, Comput. Commun., 2012, 35, (8), pp. 906915.
    17. 17)
      • 17. Ni, J., Tsang, D., Tatikonda, S., et al: ‘Optimal and structured call admission control policies for resource-sharing systems’, IEEE Trans. Commun., 2007, 55, (1), pp. 158170.
    18. 18)
      • 18. Atar, R., Cidon, I., Shifrin, M.: ‘MDP based optimal pricing for a cloud computing queueing model’, Perform. Eval., 2014, 78, pp. 16.
    19. 19)
      • 19. Moscholios, I., Logothetis, M., Vardakas, J., et al: ‘Performance metrics of a multirate resource sharing teletraffic model with finite sources under both the threshold and bandwidth reservation policies’, IET Netw., 2015, 4, (3), pp. 195208.
    20. 20)
      • 20. Yu, X., Zhu, H.: ‘An efficient method for loss performance modeling of hierarchical heterogeneous wireless networks’, Int. J. Commun. Syst., 2014, 27, (6), pp. 956968.
    21. 21)
      • 21. Wang, Z., Mathiopoulos, P., Schober, R.: ‘Channel partitioning policies for multi-class traffic in LEO-MSS’, IEEE Trans. Aerosp. Electron. Syst., 2009, 45, (4), pp. 13201334.
    22. 22)
      • 22. Iversen, V.: ‘The exact evaluation of multi-service loss system with access control’, Teleteknik (Engl. Ed.), 1987, 31, (2), pp. 5661.
    23. 23)
      • 23. Moscholios, I., Vassilakis, V., Logothetis, M., et al: ‘A probabilistic threshold-based bandwidth sharing policy for wireless multirate loss networks’, IEEE Wirel. Commun. Lett., 2016, 5, (3), pp. 304307.
    24. 24)
      • 24. Moscholios, I., Vassilakis, V., Logothetis, M., et al: ‘State-dependent bandwidth sharing policies for wireless multirate loss networks’, IEEE Trans. Wirel. Commun., 2017, 16, (8), pp. 54815497.
    25. 25)
      • 25. Venkataraman, H., Trestian, R. (Eds.): ‘5G radio access networks: centralized RAN, cloud-RAN and virtualization of small cells’ (CRC Press, Boca Raton, FL, USA, 2017).
    26. 26)
      • 26. Rong, B., Qiu, X., Kadoch, M, et al: ‘5G heterogeneous networks: self-organizing and optimization’ (Springer International Publishing, New York, USA, 2016).
    27. 27)
      • 27. Kaufman, J., Rege, K.: ‘Blocking in a shared resource environment with batched Poisson arrival processes’, Perform. Eval., 1996, 24, pp. 249263.

Related content

This is a required field
Please enter a valid email address