http://iet.metastore.ingenta.com
1887

IoT technologies for smart cities

IoT technologies for smart cities

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Networks — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

The large deployment of Internet of things (IoT) is actually enabling smart city projects and initiatives all over the world. Objects used in daily life are being equipped with electronic devices and protocol suites in order to make them interconnected and connected to the Internet. According to a recent Gartner study, 50 billion connected objects will be deployed in smart cities by 2020. These connected objects will make the authors’ cities smart. However, they will also open up risks and privacy issues. As various smart city initiatives and projects have been launched in recent years, they have witnessed not only the expected benefits, but the risks introduced. They describe the current and future trends of smart city and IoT. They also discuss the interaction between smart cities and IoT and explain some of the drivers behind the evolution and development of IoT and smart city. Finally, they discuss some of the IoT weaknesses and how they can be addressed when used for smart cities.

References

    1. 1)
      • 1. Khatoun, R., Zeadally, S.: ‘Smart cities: concepts, architectures, research opportunities’, Commun. ACM, 2016, 59, (8), pp. 4657.
    2. 2)
      • 2. Gartner says by 2020, more than half of major new business processes and systems will incorporate some element of the Internet of things’. Gartner, Inc., Technical report, 2016.
    3. 3)
      • 3. Gubbi, J., Buyya, R., Marusic, S., et al: ‘Internet of things (IoT): a vision, architectural elements, and future directions’, Future Gener. Comput. Syst., 2013, 29, (7), pp. 16451660.
    4. 4)
      • 4. Coordination and support action for global RFID-related activities and standardisation: RFID and the inclusive model for the Internet of things’. CASAGRAS, Technical report, 2009.
    5. 5)
      • 5. Atzori, L., Iera, A., Morabito, G.: ‘The internet of things: a survey’, Comput. Netw., 2010, 54, (15), pp. 27872805.
    6. 6)
      • 6. Bandyopadhyay, D., Sen, J.: ‘Internet of things: applications and challenges in technology and standardization’, Wirel. Pers. Commun., 2011, 58, (1), pp. 4969.
    7. 7)
      • 7. He, D., Zeadally, S.: ‘An analysis of RFID authentication schemes for Internet of things in healthcare environment using elliptic curve cryptography’, IEEE Internet Things J., 2015, 2, (1), pp. 7283.
    8. 8)
      • 8. Next generation networks – frameworks and functional architecture models. Recommendation ITU-T Y.2060. Overview of the Internet of things’. International Telecommunication Union, Technical report, 2012.
    9. 9)
      • 9. Bello, O., Zeadally, S., Badra, M.: ‘Network layer inter-operation of device-to-device communication technologies in Internet of things (IoT)’, Ad Hoc Netw., 2017, 57, pp. 5262, Special Issue on Internet of things and Smart Cities: security, privacy and new technologies.
    10. 10)
      • 10. Okkonen, H., Mazhelis, O., Ahokangas, P., et al: ‘Internet-of-things market, value networks, and business models: state of the art report’. Computer Science and Information Systems Reports. TR, Technical Reports 39, 2013.
    11. 11)
      • 11. Christie, D.: ‘Iot standards, Why so many?’, 2016. Available at https://www.linkedin.com/pulse/iot-standards-why-so-many-damian-christie.
    12. 12)
      • 12. Li, X., Liu, J., Sheng, Q.Z., et al: ‘TMS-RFID: temporal management of large-scale RFID applications’, Inf. Syst. Front., 2011, 13, (4), pp. 481500.
    13. 13)
      • 13. Sheng, Q.Z., Li, X., Zeadally, S.: ‘Enabling next-generation RFID applications: solutions and challenges’, Computer, 2008, 41, (9).
    14. 14)
      • 14. Wordpress: ‘The Internet of things protocol stack – from sensors to business value’, 2014. Available at https://entrepreneurshiptalk.wordpress.com/2014/01/29/the-internet-of-thing-protocol-stack-from-sensors-to-business-value/.
    15. 15)
      • 15. Harrison, C., Eckman, B., Hamilton, R., et al: ‘Foundations for smarter cities’, IBM J. Res. Dev., 2010, 54, (4), pp. 116.
    16. 16)
      • 16. Jin, J., Gubbi, J., Marusic, S., et al: ‘An information framework for creating a smart city through Internet of things’, IEEE Internet Things J., 2014, 1, (2), pp. 112121.
    17. 17)
      • 17. LoRa Alliance: ‘LoRa technology’, 2017. Available at https://www.lora-alliance.org/What-Is-LoRa/Technology.
    18. 18)
      • 18. LoRaWAN: ‘What is it. A technicaloOverview of LoRa and LoRaWANTechnical Report, LoRa Alliance. Technical Marketing Workgroup 1.0, November 2015.
    19. 19)
      • 19. Nolan, K.E., Guibene, W., Kelly, M.Y.: ‘An evaluation of low power wide area network technologies for the Internet of things’. 2016 Int. Wireless Communications and Mobile Computing Conf. (IWCMC), 2016, pp. 439444.
    20. 20)
      • 20. CNXSOFT: ‘Comparison table of low power WAN standards for industrial applications’, 2015. Available at http://www.cnx-software.com/2015/09/21/ comparison-table-of-low-power-wan-standards-for-industrial-applications/.
    21. 21)
      • 21. Worldwide Internet of things forecast update, 2016–2020’. IDC, Technical Report, 2016.
    22. 22)
      • 22. Guerrero-Ibáñez, J.A., Flores-Cortés, C., Zeadally, S.: ‘Vehicular ad hoc networks (VANETs): architecture, protocols and applications’ (Springer London, 2013), pp. 4970.
    23. 23)
      • 23. Guerrero-ibáñez, J.A., Zeadally, S., Contreras-Castillo, J.: ‘Integration challenges of intelligent transportation systems with connected vehicle, cloud computing, and Internet of things technologies’, IEEE Wirel. Commun., 2015, 22, (6), pp. 122128.
    24. 24)
      • 24. López, T.S., Ranasinghe, D.C., Harrison, M., et al: ‘Adding sense to the Internet of things’, Pers. Ubiquit. Comput., 2012, 16, (3), pp. 291308.
    25. 25)
      • 25. Zanella, A., Bui, N., Castellani, A., et al: ‘Internet of things for smart cities’, IEEE Internet Things J., 2014, 1, (1), pp. 2232.
    26. 26)
      • 26. Yick, J., Mukherjee, B., Ghosal, D.: ‘Wireless sensor network survey’, Comput. Netw., 2008, 52, (12), pp. 22922330.
    27. 27)
      • 27. Lazarescu, M.T.: ‘Design of a WSN platform for long-term environmental monitoring for iot applications’, IEEE J. Emerging Sel. Top. Circuits Syst., 2013, 3, (1), pp. 4554.
    28. 28)
      • 28. Bogatinoska, D.C., Malekian, R., Trengoska, J., et al: ‘Advanced sensing and internet of things in smart cities’. 2016 39th Int. Convention Information and Communication Technology, Electronics and Microelectronics (MIPRO), 2016, pp. 632637.
    29. 29)
      • 29. Fujdiak, R., Masek, P., Mlynek, P., et al: ‘Using genetic algorithm for advanced municipal waste collection in smart city’. 2016 Tenth Int. Symp. Communication Systems, Networks and Digital Signal Processing (CSNDSP), 2016, pp. 16.
    30. 30)
      • 30. Pala, Z., Inanc, N.: ‘Smart parking applications using RFID technology’. 2007 First Annual RFID Eurasia, 2007, pp. 13.
    31. 31)
      • 31. Zeadally, S., Hunt, R., Chen, Y.-S., et al: ‘Vehicular ad hoc networks (VANETS): status, results, and challenges’, Telecommun. Syst., 2012, 50, (4), pp. 217241.
    32. 32)
      • 32. Lu, R., Lin, X., Zhu, H., et al: ‘SPARK: a new VANET-based smart parking scheme for large parking lots’. INFOCOM 2009, 2009, pp. 14131421.
    33. 33)
      • 33. Poon, C.C.Y., Zhang, Y.-T., Bao, S.-D.: ‘A novel biometrics method to secure wireless body area sensor networks for telemedicine and m-health’, IEEE Commun. Mag., 2006, 44, (4), pp. 7381.
    34. 34)
      • 34. Hassanalieragh, M., Page, A., Soyata, T., et al: ‘Health monitoring and management using Internet-of-things (IoT) sensing with cloud-based processing: opportunities and challenges’. 2015 IEEE Int. Conf. Services Computing (SCC), 2015, pp. 285292.
    35. 35)
      • 35. Handte, M., Foell, S., Wagner, S., et al: ‘An Internet-of-things enabled connected navigation system for urban bus riders’, IEEE Internet Things J., 2016, 3, (5), pp. 735744.
    36. 36)
      • 36. Fang, X., Misra, S., Xue, G., et al: ‘Smart grid – the new and improved power grid: a survey’, IEEE Commun. Surv. Tutor., 2012, 14, (4), pp. 944980.
    37. 37)
      • 37. Liu, J., Li, X., Chen, X., et al: ‘Applications of Internet of things on smart grid in China’. 2011 13th Int. Conf. Advanced Communication Technology (ICACT), 2011, pp. 1317.
    38. 38)
      • 38. Urban mobility system upgrade how shared self-driving cars could change city traffic’. OECD/International Transport Forum, Technical Report, 2015.
    39. 39)
      • 39. Renault NEXT TWO et la vie à bord hyper-connectée pour tous’. Renault, Technical Report, 2014.
    40. 40)
      • 40. Gazis, V., Görtz, M., Huber, M., et al: ‘A survey of technologies for the Internet of things’. 2015 Int. Wireless Communications and Mobile Computing Conf. (IWCMC), 2015, pp. 10901095.
    41. 41)
      • 41. Dayarathna, M.: ‘Comparing 11 IoT development platforms’, 2016. Available at https://dzone.com/articles/iot-software-platform-comparison.
    42. 42)
      • 42. Scully, P.: ‘5 things to know about the IoT platform ecosystem’, 2016. Available at https://iot-analytics.com/5-things-know-about-iot-platform/.
    43. 43)
      • 43. IoT platforms: market report 2015–2021’. Technical Report IoT Analytics Insights for the Internet of Things, 2016.
    44. 44)
      • 44. Amazon Web Services: ‘AWS IoT’, 2017. Available at https://aws.amazon.com/iot-platform/.
    45. 45)
      • 45. Oracle: ‘Oracle Internet of things cloud service’, 2017. Available at https://aws.amazon.com/iot-platform/.
    46. 46)
      • 46. Microsoft: ‘Microsoft research, lab of things’, 2013. Available at http://www.lab-of-things.com.
    47. 47)
      • 47. OpenRemote: ‘Openremote is the open source middleware for the Internet of things’, 2016. Available at http://www.openremote.com.
    48. 48)
      • 48. KAA: ‘KAA: the truly open-source Kaa IoT platform’, 2014. Available at https://www.kaaproject.org.
    49. 49)
      • 49. ThingsBoard: ‘Thingsboard: open-source IoT platform’, 2017. Available at https://thingsboard.io.
    50. 50)
      • 50. Plotly: ‘Plotly: visualize data, together’, 2017. Available at https://plot.ly.
    51. 51)
      • 51. IBM: ‘IBM watson IoT platform’, 2017. Available at https://internetofthings.ibmcloud.com/#/.
    52. 52)
      • 52. KII: ‘KII platform’, 2016. Available at https://en.kii.com.
    53. 53)
      • 53. Echelon: ‘Echelon: industrial internet of things’, 2017. Available at http://www.echelon.com/izot-platform.
    54. 54)
      • 54. Axeda: ‘Axeda machine cloud’, 2017. Available at https://www.ptc.com/en/axeda.
    55. 55)
      • 55. Y ITU-T: ‘Overview of ubiquitous networking and of its support in NGN’. ITU-T Recommendation, 2009.
    56. 56)
      • 56. Shelby, Z., Bormann, C.: ‘6LoWPAN: the wireless embedded Internet’, vol. 43 (John Wiley & Sons, 2011).
    57. 57)
      • 57. Traub, K., Allgair, G., Barthel, H., et al: ‘The EPCglobal architecture[AQ9] framework’, EPCglobal Ratified Specification, 2005.
    58. 58)
      • 58. Lee, S.-D., Shin, M.-K., Kim, H.-J.: ‘EPC vs. IPv6 mapping mechanism’. Ninmtth Int. Conf. Advanced Communication Technology, 2007, vol. 2, pp. 12431245.
    59. 59)
      • 59. Yoon, D.G., Lee, D.H., Seo, C.H., et al: ‘RFID networking mechanism using address management agent’.  Fourth Int. Conf. Networked Computing and Advanced Information Management, 2008 NCM'08, 2008, vol. 1, pp. 617622.
    60. 60)
      • 60. Jain, P.C., Vijaygopalan, K.P.: ‘RFID and wireless sensor networks’. Proc. ASCNT–2010, CDAC, Noida, India, 2010, pp. 111.
    61. 61)
      • 61. Ratified standard specification with approved, fixed errata. EPCglobal object name service (ONS) 1.0.1’. EPCglobal Inc., Technical Report, May 2008.
    62. 62)
      • 62. Ratified standard. GS1 object name service (ONS) Version 2.0.1’. Technical Report GS1, January 2013.
    63. 63)
      • 63. Bello, O., Zeadally, S.: ‘Intelligent device-to-device communication in the Internet of things’, IEEE Syst. J., 2016, 10, (3), pp. 11721182.
    64. 64)
      • 64. Lakshman, T.V., Madhow, U.: ‘The performance of TCP/IP for networks with high bandwidth-delay products and random loss’, IEEE/ACM Trans. Netw. (ToN), 1997, 5, (3), pp. 336350.
    65. 65)
      • 65. Internet of things: privacy and security in a connected world’. US Federal Trade Commission (FTC), Technical Report, 2015.
    66. 66)
      • 66. Jing, Q., Vasilakos, A.V., Wan, J., et al: ‘Security of the Internet of things: perspectives and challenges’, Wirel. Netw., 2014, 20, (8), pp. 24812501.
    67. 67)
      • 67. Han, K., Luo, J., Liu, Y., et al: ‘Algorithm design for data communications in duty-cycled wireless sensor networks: a survey’, IEEE Commun. Mag., 2013, 51, (7), pp. 107113.
    68. 68)
      • 68. Malan, D.J., Welsh, M., Smith, M.D.: ‘A public-key infrastructure for key distribution in TinyOS based on elliptic curve cryptography’. 2004 First Annual IEEE Communications Society Conf. Sensor and Ad Hoc Communications and Networks, 2004 IEEE SECON 2004, 2004, pp. 7180.
    69. 69)
      • 69. Li, M., Li, Z., Vasilakos, A.V.: ‘A survey on topology control in wireless sensor networks: taxonomy, comparative study, and open issues’, Proc. IEEE, 2013, 101, (12), pp. 25382557.
    70. 70)
      • 70. Menezes, A.J., Van Oorschot, P.C., Vanstone, S.A.: ‘Handbook of applied cryptography’ (CRC Press, 1996).
    71. 71)
      • 71. Hoffstein, J., Howgrave-Graham, N., Pipher, J., et al: ‘NTRUEncrypt and NTRUSign: efficient public key algorithms for a post-quantum world’. Proc. Int. Workshop on Post-Quantum Cryptography (PQCrypto 2006), 2006, pp. 7177.
    72. 72)
      • 72. Hankerson, D., Menezes, A.J., Vanstone, S.: ‘Guide to elliptic curve cryptography’ (Springer Science & Business Media, 2006).
    73. 73)
      • 73. Eschenauer, L., Gligor, V.D.: ‘A key-management scheme for distributed sensor networks’. Proc. Ninth ACM Conf. Computer and Communications Security, 2002, pp. 4147.
    74. 74)
      • 74. Gaubatz, G., Kaps, J.-P., Ozturk, E., et al: ‘State of the art in ultra-low power public key cryptography for wireless sensor networks’. Third IEEE Int. Conf. Pervasive Computing and Communications Workshops, 2005 PerCom 2005 Workshops, 2005, pp. 146150.
    75. 75)
      • 75. Perrig, A., Szewczyk, R., Tygar, J.D., et al: ‘SPINS: security protocols for sensor networks’, Wirel. Netw., 2002, 8, (5), pp. 521534.
    76. 76)
      • 76. Wander, A.S., Gura, N., Eberle, H., et al: ‘Energy analysis of public-key cryptography for wireless sensor networks’. Third IEEE Int. Conf. Pervasive Computing and Communications, 2005 PerCom 2005, 2005, pp. 324328.
    77. 77)
      • 77. Landegem, T.V., Viswanathan, H.: ‘Anywhere, anytime, immersive communications [j]’, Enriching Commun., 2008, 2, (1), pp. 16.
    78. 78)
      • 78. Rmayti, M., Begriche, Y., Khatoun, R., et al: ‘Denial of service (DOS) attacks detection in MANET using Bayesian classifiers’. 2014 IEEE 21st Symp. Communications and Vehicular Technology in the Benelux (SCVT), 2014, pp. 712.
    79. 79)
      • 79. Dromard, J., Khatoun, R., Khoukhi, L.: ‘A watchdog extension scheme considering packet loss for a reputation system in wireless mesh network’. 2013 20th Int. Conf. Telecommunications (ICT), 2013, pp. 15.
    80. 80)
      • 80. Biggs, J.: ‘Hackers release source code for a powerful DDoS app called Mirai’, October 2016. Available at https://techcrunch.com/2016/10/10/hackers-release-source-code-for-a-powerful-ddos-app called-mirai/.
    81. 81)
      • 81. Manyika, J., Chui, M., Brown, B., et al: ‘Big data: the next frontier for innovation, competition, and productivity’. McKinsey Global Institute, Technical Report, 2011.
    82. 82)
      • 82. Walker, S.J.: ‘Big data a revolution that will transform how we live work and think’, 2014.
    83. 83)
      • 83. Kitchin, R.: ‘The real-time city? Big data and smart urbanism’, GeoJournal, 2014, 79, (1), pp. 114.
    84. 84)
      • 84. Chen, M., Mao, S., Liu, Y.: ‘Big data: a survey’, Mob. Netw. Appl., 2014, 19, (2), pp. 171209.
    85. 85)
      • 85. Contreras-Castillo, J., Zeadally, S., Ibañez, J.A.G.: ‘Solving vehicular ad hoc network challenges with big data solutions’, IET Netw., 2016, 5, (4), pp. 8184.
    86. 86)
      • 86. Khan, Z., Anjum, A., Kiani, S.L.: ‘Cloud based big data analytics for smart future cities’. Proc. 2013 IEEE/ACM Sixth Int. Conf. Utility and Cloud Computing, 2013, pp. 381386.
    87. 87)
      • 87. Batty, M.: ‘Big data, smart cities and city planning’, Dialogues Hum. Geography, 2013, 3, (3), pp. 274279.
    88. 88)
      • 88. Simmhan, Y., Aman, S., Kumbhare, A., et al: ‘Cloud-based software platform for big data analytics in smart grids’, Comput. Sci. Eng., 2013, 15, (4), pp. 3847.
    89. 89)
      • 89. Rouse, M.: ‘Fog computing (fog networking, fogging)’, 2016. Available at http://searchdatacenter.techtarget.com/definition/edge-computing.
    90. 90)
      • 90. Bonomi, F., Milito, R., Zhu, J., et al: ‘Fog computing and its role in the Internet of things’. Proc. First Edition of the MCC Workshop on Mobile Cloud Computing, 2012, pp. 1316.
    91. 91)
      • 91. Bonomi, F., Milito, R., Natarajan, P., et al: ‘Fog computing: a platform for Internet of things and analytics’. Big Data and Internet of Things: A Roadmap for Smart Environments, 2014, pp. 169186.
    92. 92)
      • 92. Rouse, M.: ‘Edge computing’, 2016. Available at http://searchdatacenter.techtarget.com/definition/edge-computing.
    93. 93)
      • 93. Shi, W., Cao, J., Zhang, Q., et al: ‘Edge computing: vision and challenges’, IEEE Internet Things J., 2016, 3, (5), pp. 637646.
    94. 94)
      • 94. LoRa Alliance: ‘Wide area networks for IoT’, 2017. Available at https://www.lora-alliance.org.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-net.2017.0163
Loading

Related content

content/journals/10.1049/iet-net.2017.0163
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address