http://iet.metastore.ingenta.com
1887

Performance evaluation of secure multipath retransmission mechanism in next generation heterogeneous communication systems

Performance evaluation of secure multipath retransmission mechanism in next generation heterogeneous communication systems

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Networks — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

With the standardisation of the fifth generation (5G) wireless network interface was established in 3GPP, the features of 5G arouse great interest both in academics and industry, even government. The significant advancements of 5G wireless network technology will make a great increase in the demand for content-rich streaming media services. What's more, many mobile devices with heterogeneous network interfaces (4G, WiFi, and even 5G) connect multiple paths for data delivery simultaneously. Multiple Transmission Control Protocol (MPTCP) is recommended by Internet Engineering Task Force (IETF) to multi-path parallel transmission, which is an important transport layer protocol. Although there are many attractive benefits by using MPTCP for data delivery, it becomes sensitive for MPTCP to network attacks. When a subflow with the MPTCP association suffers from some network attacks (e.g. denial of service attacks), there is undoubted that it will cause large numbers of retransmission data. Unfortunately, the regular MPTCP retransmission mechanisms retransmit data over the same path, which may cause receiver buffer blocking. In this study, the authors propose effective retransmission mechanisms in MPTCP for retransmitting data on a non-congested path. The simulation results show that the proposed retransmission mechanism has better performance than the regular’ in the network attacks.

References

    1. 1)
      • 1. Shi, C., Bergstrom, A., Eriksson, E., et al: ‘Retransmission schemes for 5G radio interface’, Proc. of 2016 IEEE Globecom Workshiops (GC Wkshps), 2016, pp. 16.
    2. 2)
      • 2. Nightigale, J., Wang, Q., Calero, J., et al: ‘QoE-driven, energy-aware video adaptation in 5G networks: the SELFNET self-optimisation use case’, Int. J. Distrib. Sens. Netw., 2016, 2016, (4), pp. 117.
    3. 3)
      • 3. Xu, C.Q., Zhao, J., Muntean, G.M., et al: ‘Congestion control design for multipath transport protocol: a survey’, IEEE Commun. Surv. Tutor., 2016, 18, (4), pp. 29482969.
    4. 4)
      • 4. Cao, Y.L., Liu, Q.H., Luo, G.L., et al: ‘PR-MPTCP+: context-aware QoE-oriented multipath TCP partial reliability extension for real-time multimedia applications’. Proc. of IEEE Visual Communications and Image Processing (VCIP), 2016.
    5. 5)
      • 5. Shin, S.J., Han, D.H., Cho, H.J., et al: ‘TCP and MPTCP retransmission timeout control for networks supporting WLANs’, IEEE Commun., 2016, 20, (5), pp. 994997.
    6. 6)
      • 6. Wu, J.Y., et al: ‘Energy-minimized multipath video transport to mobile devices in heterogeneous wireless network’, IEEE J. Sel. Areas Commun., 2016, 34, (5), pp. 11601178.
    7. 7)
      • 7. Xu, C.Q., et al: ‘CMT-NC: improving the concurrent multipath transfer performance using network coding in wireless networks’, IEEE Trans. Veh. Technol., 2016, 65, (4), pp. 17351751.
    8. 8)
      • 8. Diogo, R., Pardal, M.L., Luis, R., et al: ‘MACHETE: multi-path communication for security’. Proc. of 2016 IEEE 15th Int. Symp. on Network Computing and Application (NCA), 2016, pp. 6067.
    9. 9)
      • 9. Zhao, Y., Goldsmith, A., Poor, H.V.: ‘Minimum sparsity of unobservable power network attacks’, IEEE Trans. Autom. Control, 2017, 62, pp. 33543368.
    10. 10)
      • 10. Hwang, J.Y., Walid, A., Yoo, J.: ‘Fast coupled retransmission for multipath TCP in data center networks’, IEEE Syst. J., 2017, PP, (99), pp. 14.
    11. 11)
      • 11. Shen, H.H., Wang, C., Ma, W.F., et al: ‘Research of retransmission policy based on compound parameters in SCTP-CMT’. Proc. of the 2nd Int. Conf. Information Technology and Electronic Commerce (ICITEC2014), 2014, pp. 2528.
    12. 12)
      • 12. Prasad, K.V., Hossain, E., Bhargava, V.K.: ‘Energy efficiency IN massive MIMO-based 5G NETWORKS: opportunities AND challenges’, IEEE Wirel. Commun., 2017, 24, pp. 8694.
    13. 13)
      • 13. Ferdouse, L., Ejaz, W., Raahemifar, K., et al: ‘Interference and throughput aware resource allocation for multi-class D2D in 5G networks’, IET Commun., 2017, 11, pp. 12411250.
    14. 14)
      • 14. Wu, Z.J., Wang, M.X., Yan, C.C., et al: ‘Low-rate DoS attack flows based on frequency spectral analysis’, Chin. Commun., 2017, 14, (6), pp. 98112.
    15. 15)
      • 15. Wu J.Y., , et al: ‘Bandwidth-efficient multipath transport protocol for quality-guaranteed real-time video over heterogeneous wireless networks’, IEEE Trans. Commun., 2016, 64, (6), pp. 24772493.
    16. 16)
      • 16. Chen, M., Zhang, Y., Li, Y., et al: ‘EMC: emotion-aware mobile cloud computing in 5G’, IEEE Netw., 2015, 29, (2), pp. 3238.
    17. 17)
      • 17. De, C.Q., Baerts, M., Hesmans, B., et al: ‘Observing real smartphone applications over multipath TCP’, IEEE Commun. Mag., 2016, 54, (3), pp. 8893.
    18. 18)
      • 18. Ke, F.F., Huang, M.H., Liu, Z.H., et al: ‘Multi-attribute aware multipath data scheduling strategy for efficient MPTCP-based data delivery’. Proc. of the 22nd Asia-Pacific Conf. Communications (APCC2016), 2016, pp. 248253.
    19. 19)
      • 19. Zeng, J.X., Ke, F.F., Zuo, Y., et al: ‘Multi-attribute aware path selection approach for efficient MPTC-based data delivery’, J. Internet Serv. Inf. Secur. (JISIS), 2017, 7, pp. 2839.
    20. 20)
      • 20. Zhang, H.K., Wei, Q., Chao, H.C., et al: ‘Smart identifier network: a collaborative architecture for the future internet’, IEEE Netw., 2016, 30, pp. 4651.
    21. 21)
      • 21. Xu, C.Q., Quan, W., Vasilakos, A.V., et al: ‘Information-centric cost-efficient optimization for multimedia content delivery in mobile vehicular networks’, Comput. Commun., 2017, 99, pp. 93106.
    22. 22)
      • 22. Song, F., Zhou, Y.T., Kong, K., et al: ‘Smart collaborative connection management for identifier-based network’, IEEE Access, 2017, 5, pp. 79367949.
    23. 23)
      • 23. Oh, B.H., Lee, J.Y.: ‘Feedback-based path failure detection and buffer blocking protection for MPTCP’, IEEE/ACM Trans. Netw., 2016, 24, pp. 34503461.
    24. 24)
      • 24. Wu, J.Y., Cheng, B., Wang, M., et al: ‘Energy-efficient bandwidth aggregation for delay-constrained video over heterogeneous wireless networks’, IEEE J. Sel. Areas Commun., 2017, 35, (1), pp. 3049.
    25. 25)
      • 25. Liu, J.W., Rayamajhi, A.J., Martin, J.: ‘Using MPTCP subflow association control for heterogeneous wireless network optimization’. Proc. of 2016 14th Int. Symp. on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt), 2016, pp. 18.
    26. 26)
      • 26. Xue, K.P., Han, J.P., Zhang, H., et al: ‘Migrating unfairness among subflows in MPTCP with network coding for wired-wireless networks’, IEEE Trans. Veh. Technol., 2017, 1, (66), pp. 798809.
    27. 27)
      • 27. Liu, Y.W., Neri, A., Ruggeri, A., et al: ‘A MPTCP-based network architecture for intelligent train control and traffic management operations’, IEEE Trans. Intell. Transp. Syst., 2016, 18, pp. 113.
    28. 28)
      • 28. Amani, A., Angela, D.X., Dritan, K.S.: ‘Packet reordering response for MPTCP under wireless heterogeneous environment’. Proc. of 2016 23th Int. Conf. Telecommunications (ICT), 2016, pp. 16.
    29. 29)
      • 29. Song, F., Quan, W., Zhao, T.M., et al: ‘Ports distribution management for privacy protection inside local domain name system’. Proc. of the 8th ACM CCS Int. Workshop on Managing Insider Security Threats, 2016, pp. 8187.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-net.2017.0116
Loading

Related content

content/journals/10.1049/iet-net.2017.0116
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address