http://iet.metastore.ingenta.com
1887

Energy-efficient clustering algorithm for structured wireless sensor networks

Energy-efficient clustering algorithm for structured wireless sensor networks

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Networks — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Wireless communication is preferred in numerous sensing applications due to its convenience, cost-effectiveness, and flexibility. Modern sensors are versatile to sense the environmental factors and send them wirelessly. The information collection centres prefer to collect confined clustered information from a group of sensors rather than collecting them from individual sensors. Good connectivity, speedy communication, and effective data gathering can be ensured in the network when a good clustering algorithm is utilized. In this paper, a simple and effective clustering algorithm called energy efficient structured clustering algorithm (EESCA) is proposed for the environmental monitoring fields. Cluster heads (CHs) are elected based on average communication distance and lingering energy. Further, a new parameter called cluster head to normal ratio (CTNR) is introduced to rotate the cluster head role among the nodes. The performance evaluation is carried out in terms of first node die (FND), simulation time, scalability, load balancing, and a new parameter called complete useful data percentage (CUDP). Simulations are conducted for three different network scenarios. Results are compared with the renowned existing algorithms low energy adaptive clustering hierarchy (LEACH) and scalable energy efficient clustering hierarchy (SEECH) and it is proved that the proposed technique is beneficial for WSNs.

References

    1. 1)
      • 1. Aslan, Y.E., Korpeoglu, I., Ulusoy, Ö.: ‘A framework for use of wireless sensor networks in forest fire detection and monitoring’, Comput. Environ. Urban Syst., 2012, 36, (6), pp. 614625.
    2. 2)
      • 2. Lara, R., Bentez, D., Caamaño, A., et al: ‘On real-time performance evaluation of volcano-monitoring systems with wireless sensor networks’, IEEE Sens. J., 2015, 15, (6), pp. 35143523.
    3. 3)
      • 3. Akyildiz, I.F., Pompili, D., Melodia, T.: ‘Underwater acoustic sensor networks: research challenges’, Ad Hoc Netw., 2005, 3, (3), pp. 257279.
    4. 4)
      • 4. Darehshoorzadeh, A., Boukerche, A.: ‘Underwater sensor networks: a new challenge for opportunistic routing protocols’, IEEE Commun. Mag., 2015, 53, (11), pp. 98107.
    5. 5)
      • 5. Wang, F., Liu, J.: ‘Networked wireless sensor data collection: issues, challenges, and approaches’, IEEE Commun. Surv. Tutor., 2011, 13, (4), pp. 673687.
    6. 6)
      • 6. Dargie, W., Poellabauer, C.: ‘Fundamentals of wireless sensor networks: theory and practice’ (John Wiley & Sons, Hoboken, USA, 2010).
    7. 7)
      • 7. Zhao, F., Guibas, L.J.: ‘Wireless sensor networks: an information processing approach’ (Morgan Kaufmann, Burlington, USA, 2004).
    8. 8)
      • 8. Karl, H., Willig, A.: ‘Protocols and architectures for wireless sensor networks’ (John Wiley & Sons, Hoboken, USA, 2007).
    9. 9)
      • 9. Yick, J., Mukherjee, B., Ghosal, D.: ‘Wireless sensor network survey’, Comput. Netw., 2008, 52, (12), pp. 22922330.
    10. 10)
      • 10. Akyildiz, I.F., Su, W., Sankarasubramaniam, Y., et al: ‘Wireless sensor networks: a survey’, Comput. Netw., 2002, 38, (4), pp. 393422.
    11. 11)
      • 11. Thakkar, A., Kotecha, K.: ‘Cluster head election for energy and delay constraint applications of wireless sensor network’, IEEE Sens. J., 2014, 14, (8), pp. 26582664.
    12. 12)
      • 12. Afsar, M.M., Tayarani, N.M.H.: ‘Clustering in sensor networks: a literature survey’, J. Netw. Comput. Appl., 2014, 46, pp. 198226.
    13. 13)
      • 13. Abbasi, A.A., Younis, M.: ‘A survey on clustering algorithms for wireless sensor networks’, Comput. Commun., 2007, 30, (14), pp. 28262841.
    14. 14)
      • 14. Heinzelman, W.B., Chandrakasan, A.P., Balakrishnan, H.: ‘An application-specific protocol architecture for wireless micro sensor networks’, IEEE Trans. Wirel. Commun., 2002, 1, (4), pp. 660670.
    15. 15)
      • 15. Younis, O., Fahmy, S.: ‘HEED: a hybrid, energy-efficient, distributed clustering approach for ad hoc sensor networks’, IEEE Trans. Mob. Comput., 2004, 3, (4), pp. 366379.
    16. 16)
      • 16. Youssef, A., Younis, M., Youssef, M., et al: ‘WSN16-5: distributed formation of overlapping multi-hop clusters in wireless sensor networks’. Global Telecommunications Conf. 2006 GLOBECOM'06, 2006, pp. 16.
    17. 17)
      • 17. Dahnil, D.P., Singh, Y.P., Ho, C.K.: ‘Topology-controlled adaptive clustering for uniformity and increased lifetime in wireless sensor networks’, IET Wirel. Sens. Syst., 2012, 2, (4), pp. 318327.
    18. 18)
      • 18. Ye, M., Li, C., Chen, G., et al: ‘EECS: an energy efficient clustering scheme in wireless sensor networks’. 24th IEEE Int. Performance, Computing, and Communications Conf. 2005 IPCCC 2005, 2005, pp. 535540.
    19. 19)
      • 19. Heinzelman, W.B.: ‘Application-specific protocol architectures for wireless networks’. Massachusetts Institute of Technology, 2000.
    20. 20)
      • 20. Tarhani, M., Kavian, Y.S., Siavoshi, S.: ‘SEECH: scalable energy efficient clustering hierarchy protocol in wireless sensor networks’, IEEE Sens. J., 2014, 14, (11), pp. 39443954.
    21. 21)
      • 21. Yu, J., Feng, L., Jia, L., et al: ‘A local energy consumption prediction-based clustering protocol for wireless sensor networks’, Sensors, 2014, 14, (12), pp. 2301723040.
    22. 22)
      • 22. Yu, J., Qi, Y., Wang, G., et al: ‘A cluster-based routing protocol for wireless sensor networks with nonuniform node distribution’, AEU-Int. J. Electron. Commun., 2012, 66, (1), pp. 5461.
    23. 23)
      • 23. Lin, H., Wang, L., Kong, R.: ‘Energy efficient clustering protocol for large-scale sensor networks’, IEEE Sens. J., 2015, 15, (12), pp. 71507160.
    24. 24)
      • 24. Jia, D., Zhu, H., Zou, S., et al: ‘Dynamic cluster head selection method for wireless sensor network’, IEEE Sens. J., 2016, 16, (8), pp. 27462754.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-net.2017.0112
Loading

Related content

content/journals/10.1049/iet-net.2017.0112
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address