http://iet.metastore.ingenta.com
1887

Low energy aware communication process in IoT using the green computing approach

Low energy aware communication process in IoT using the green computing approach

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Networks — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

The Internet of Things (IoT) is a ubiquitous network that interconnects and integrates the devices and cyberspace to enable the smart objects. It lays a platform to collect, process, and to analyse the data for monitoring and controlling the cyber–physical world by using IoT sensor devices. These sensor devices can be wired or wireless that connects to IoT. The wireless devices are battery-operated devices, unlike wired devices. The energy reduction is critical for battery-operated devices. The smart devices need an intelligent transmission that increases the life of the devices. There are difficulties in sensor management with regard to energy reduction by applying the energy-efficient communication energy saved over IoT devices communication. Finally, the low energy aware communication process can enhance device life time in IoT. Least energy aware communication technique is a promising paradigm for IoT is reduced 30% communication overhead.

References

    1. 1)
      • 1. Evans, D.: ‘The Internet of Things – how the next evolution of the internet is changing everything’. CISCO White Paper, 2014, No. April, pp. 111.
    2. 2)
      • 2. Perera, C., Ranjan, R., Wang, L.: ‘End-to-end privacy for open big data markets’, IEEE Cloud Comput., 2015, 2, (4), pp. 4453.
    3. 3)
      • 3. Khalil, N., Abid, M.R., Benhaddou, D., et al: ‘Wireless sensors networks for Internet of Things’, 2014 IEEE Ninth International Conference on Intelligent Sensors, Sensor Networks and Information Processing (ISSNIP), 2014, No. April, pp. 2124.
    4. 4)
      • 4. Miller, E.H.: ‘A note on reflector arrays’, IEEE Trans. Antennas Propag., 1967, 15, (5), pp. 692693.
    5. 5)
      • 5. Aijaz, A., Aghvami, A.H.: ‘Cognitive machine-to-machine communications for internet-of-things: a protocol stack perspective’, IEEE Internet Things J., 2015, 2, (2), pp. 103112.
    6. 6)
      • 6. Al-Fuqaha, A., Guizani, M., Mohammadi, M., et al: ‘Internet of things: a survey on enabling technologies, protocols and applications’, IEEE Commun. Surv. Tutor., 2015, PP, (99), pp. 11.
    7. 7)
      • 7. Huang, J., Meng, Y., Gong, X., et al: ‘A novel deployment scheme for green internet of things’, IEEE Internet Things J., 2014, PP, (99), pp. 11.
    8. 8)
      • 8. Duan, J., Gao, D., Yang, D., et al: ‘An energy-aware trust derivation scheme with game theoretic approach in wireless sensor networks for IoT applications’, IEEE Internet Things J., 2014, PP, (99), pp. 11.
    9. 9)
      • 9. Ashraf, Q.M., Habaebi, M.H.: ‘Autonomic schemes for threat mitigation in Internet of Things’, J. Netw. Comput. Appl., 2015, 49, pp. 112127.
    10. 10)
      • 10. Begum, K.: ‘Industrial WSN using IoT: a survey’, 2016.
    11. 11)
      • 11. Kirk, R.: ‘Cars of the future: the Internet of Things in the automotive industry’, Netw. Secur., 2015, 2015, (9), pp. 1618.
    12. 12)
      • 12. Fuhong, L., Qian, L., Xianwei, Z., et al: ‘Cooperative differential game for model energy-bandwidth efficiency tradeoff in the Internet of Things’, China Commun., 2014, 11, (1), pp. 92102.
    13. 13)
      • 13. Jiang, H., Kiziroglou, M.E., Yates, D.C., et al: ‘A motion-powered piezoelectric pulse generator for wireless sensing via FM transmission’, IEEE Internet of Things Journal, 2015, 2, (1), pp. 513.
    14. 14)
      • 14. Zhao, Y., Feng, J., Liu, X., et al: ‘Self-adaptive strain-relaxation optimization for high-energy lithium storage material through crumpling of graphene’, Nat. Commun., 2014, 5, p. 4565.
    15. 15)
      • 15. Iera, A., Morabito, G., Atzori, L.: ‘The social Internet of Things’. 2015 IEEE Int. Conf. on Cloud Engineering, 2015, pp. 11.
    16. 16)
      • 16. Patel, P.D.: ‘Enabling high-level application development for the Internet of Things’, J. Syst. Softw., 2015, 103, pp. 6284.
    17. 17)
      • 17. Chaqfeh, M.A., Mohamed, N.: ‘Challenges in middleware solutions for the internet of things’. Proc. of the 2012 Int. Conf. on Collaboration Technologies and Systems, CTS 2012, 2012, pp. 2126.
    18. 18)
      • 18. Chen, Y., Han, F., Yang, Y.-H., et al: ‘Time-reversal wireless paradigm for green internet of things: an overview’, IEEE Internet Things J., 2014, PP, (99), pp. 11.
    19. 19)
      • 19. Lanzisera, S., Weber, A., Liao, A., et al: ‘Communicating power supplies: bringing the internet to the ubiquitous energy gateways of electronic devices’, IEEE Internet Things J., 2014, PP, (99), pp. 11.
    20. 20)
      • 20. Lee, J.G., Kim, S.W., Kim, D.H., et al: ‘D2ART: direct data accessing from passive RFID tag for infra-less, contact-less, and battery-less pervasive computing’, Microprocess. Microsyst., 2015, 39, (8), pp. 767781.
    21. 21)
      • 21. Liang, J., Chen, J.: ‘An energy-efficient sleep scheduling with QoS consideration in 3GPP LTE-advanced networks for internet of things’, IEEE J. Emerg. Sel. Top. Circuits Syst., 2013, 3, (1), pp. 1322.
    22. 22)
      • 22. Lin, H.: ‘DeepSleep IEEE 802.11 enhancement for energy-harvesting machine-to-machine communications.pdf’, IEEE Global Communications Conference (GLOBECOM), 2012, pp. 52315236.
    23. 23)
      • 23. Mumtaz, S., Lundqvist, H., Huq, K.M.S., et al: ‘Smart direct-LTE communication: an energy saving perspective’, Ad Hoc Netw., 2014, 13, No. PART B, pp. 296311.
    24. 24)
      • 24. Patnaikuni, P.S.R.: ‘An architecture for ‘Web of Things’ using SOCKS protocol based IPv6/IPv4 gatewaying for heterogeneous communication’, Adv. Internet Things, 2012, 02, (01), pp. 812.
    25. 25)
      • 25. Pongle, P., Chavan, G.: ‘A survey: attacks on RPL and 6LoWPAN in IoT’. 2015 Int. Conf. on Pervasive Computing: Advance Communication Technology and Application for Society, ICPC 2015, Vol. 00, No. c, pp. 05.
    26. 26)
      • 26. Nahas, B.A., Duquennoy, S., Iyer, V., et al: ‘Low-power listening goes multi-channel’. Proc. – IEEE Int. Conf. on Distributed Computing in Sensor Systems, DCOSS 2014, 2014, pp. 29.
    27. 27)
      • 27. Scholar, P.G.: ‘Internet of things based smart transportation systems’, Int. Res. J. Eng. Technol. (IRJET), 2015, 2, (7), pp. 12071210.
    28. 28)
      • 28. Severi, S., Sottile, F., Abreu, G., et al: ‘M2M technologies: enablers for a pervasive internet of things’. EuCNC 2014 – European Conf. on Networks and Communications.
    29. 29)
      • 29. Chen, P., Cheng, S., Chen, K.: ‘Information fusion to defend intentional attack in internet of things’, IEEE Internet Things J., 2014, 1, (4), pp. 337348.
    30. 30)
      • 30. Huang, Z., Lin, K.-J., Yu, S.-Y., et al: ‘Co-locating services in IoT systems to minimize the communication energy cost’, J. Innov. Digit. Ecosyst., 2014, 1, (1-2), pp. 4757.
    31. 31)
      • 31. Wamba, S.F., Ngai, E.W.T.: ‘Internet of things in healthcare: the case of RFID-enabled asset management’, Int. J. Biomed. Eng. Technol., 2013, 11, (3), pp. 318335.
    32. 32)
      • 32. Ward, T., Martinez, K., Chown, T.: ‘Simulated analysis of connectivity issues for sleeping sensor nodes in the internet of things’. Proc. of the 11th ACM Symp. on Performance Evaluation of Wireless Ad Hoc, Sensor, and Ubiquitous Networks – PE-WASUN ‘14, 2014, pp. 101108.
    33. 33)
      • 33. Razzak, F.: ‘Spamming the Internet of Things: a possibility and its probable solution’, Procedia Comput. Sci., 2012, 10, pp. 658665.
    34. 34)
      • 34. Tyagi, S., Darwish, A., Khan, M.Y.: ‘Managing computing infrastructure for IoT data’, July 2014, pp. 2935.
    35. 35)
      • 35. Ashton, K.: ‘That ‘Internet of Things’ thing’, RFiD J., 2005, p. 4986.
    36. 36)
      • 36. Reusing, T.: ‘Comparison of operating systems TinyOS and Contiki’, Sens. Nodes-Oper. Netw. Appl.(SN), 2012, 3, pp. 713.
    37. 37)
      • 37. Jain, D., Krishna, P.V., Saritha, V.: ‘A study on Internet of Things based applications’, arXiv.org, Vol. cs.NI, 2012, pp. 110.
    38. 38)
      • 38. Yetgin, H., Member, S., Tsz, K., et al: ‘Network-lifetime maximization of wireless sensor networks’, IEEE Access., 2015, 3, pp. 21912226.
    39. 39)
      • 39. Yildiz, H.U., Bicakci, K., Tavli, B., et al: ‘Maximizing wireless sensor network lifetime by communication/computation energy optimization of non-repudiation security service: node level versus network level strategies’, Ad Hoc Netw., 2015, 37, pp. 123.
    40. 40)
      • 40. Khattak, H.A., Ruta, M., Eugenio, E., et al: ‘CoAP-based healthcare sensor networks: a survey’. Proc. of 2014 11th Int. Bhurban Conf. on Applied Sciences and Technology, IBCAST 2014, 2014, pp. 499503.
    41. 41)
      • 41. Kelly, S.D.T., Suryadevara, N.K., Mukhopadhyay, S.C.: ‘Towards the implementation of IoT for environmental condition monitoring in homes’, IEEE Sens. J., 2013, 13, (10), pp. 38463853.
    42. 42)
      • 42. Suresh, K., Rajasekharababu, M.: ‘Power-aware system design for multiprocessors and voltage scaling/frequency’, J. Theor. and Appl. Inf. Technol., 2015, 72, (1), pp. 149154.
    43. 43)
      • 43. Occhiuzzi, C., Amendola, S., Manzari, S., et al: ‘Configurable radiofrequency identification sensing breadboard for industrial Internet of Things’, Electron. Lett., 2017, 53, (3), pp. 129130.
    44. 44)
      • 44. Karakostas, B.: ‘A DNS architecture for the internet of things: a case study in transport logistics’, Procedia Comput. Sci., 2013, 19, (Ant), pp. 594601.
    45. 45)
      • 45. Botta, A., De Donato, W., Persico, V., et al: ‘On the integration of cloud computing and internet of things’. Proc. - 2014 Int. Conf. on Future Internet of Things and Cloud, FiCloud 2014, 2014, pp. 2330.
    46. 46)
      • 46. Jaimes, L.G., Vergara-Laurens, I.J., Raij, A.: ‘A survey of incentive techniques for mobile crowd sensing’, IEEE Internet Things J., 2015, 2, (5), pp. 370380.
    47. 47)
      • 47. Beaudaux, J., Gallais, A., Montavont, J., et al: ‘Thorough empirical analysis of X-MAC over a large scale internet of things testbed’, IEEE Sensors J., 2014, 14, (2), pp. 383392.
    48. 48)
      • 48. Vecchio, M., Giaffreda, R., Marcelloni, F.: ‘Adaptive lossless entropy compressors for tiny IoT devices’, IEEE Trans. Wirel. Commun., 2014, 13, (2), pp. 10881100.
    49. 49)
      • 49. Zanella, A., Bui, N., Castellani, A., et al: ‘Internet of Things for smart cities’, IEEE Internet Things J., 2014, 1, (1), pp. 2232.
    50. 50)
      • 50. Peoples, C., Parr, G., McClean, S., et al: ‘Performance evaluation of green data centre management supporting sustainable growth of the internet of things’, Simul. Modelling Pract. Theory, 2013, 34, pp. 221242.
    51. 51)
      • 51. Musavi, S.H.A., Chowdhry, B.S., Kumar, T., et al: ‘IoTs enable active contour modeling based energy efficient and thermal aware object tracking on FPGA’, Wirel. Pers. Commun., 2015, 85, (2), pp. 529543.
    52. 52)
      • 52. Salim, F., Haque, U.: ‘Urban computing in the wild: a survey on large scale participation and citizen engagement with ubiquitous computing, cyber physical systems, and Internet of Things’, Int. J. Hum. Comput. Stud., 2015, 81, pp. 3148.
    53. 53)
      • 53. Collotta, M., Pau, G.: ‘Bluetooth for internet of things: a fuzzy approach to improve power management in smart homes’, Comput. Electr. Eng., 2015, 44, pp. 137152.
    54. 54)
      • 54. Wigner, E.P.: ‘Theory of traveling-wave optical laser’, Phys. Rev., 1965, 134, pp. A635A646.
    55. 55)
      • 55. Anisi, M.H., Abdul-Salaam, G., Idris, M.Y.I., et al: ‘Energy harvesting and battery power based routing in wireless sensor networks’, Wirel. Netw., 2015, 23, pp. 249266.
    56. 56)
      • 56. Athreya, A.P., Tague, P.: ‘Network self-organization in the Internet of Things’. 2013 IEEE Int. Workshop of Internet-of-Things Networking and Control, IoT-NC 2013, pp. 2533.
    57. 57)
      • 57. Ayala, I., Amor, M., Fuentes, L., et al: ‘A software product line process to develop agents for the IoT’, Sensors (Basel, Switzerland), 2015, 15, (7), pp. 1564015660.
    58. 58)
      • 58. Duncombe, J.U.: ‘Infrared navigation – part I: an assessment of feasibility’, IEEE Trans. Electron Devices, 1959, ED-11, (1), pp. 3439.
    59. 59)
      • 59. Chen, Y., Han, F., Yang, Y.-H., et al: ‘A vision of IoT: applications, challenges, and opportunities with China perspective’, IEEE Internet Things J., 2014, 2, (5), pp. 11.
    60. 60)
      • 60. Lamaazi, H., Benamar, N., Jara, A.J., et al: ‘Challenges of the Internet of Things: IPv6 and network management’. 2014 Eighth Int. Conf. on Int. Workshop on Extending Seamlessly to the Internet of Things (esIoT-2014), Innovative Mobile and Internet Services in Ubiquitous Computing (IMIS), 2014, pp. 328333.
    61. 61)
      • 61. Suciu, G., Vulpe, A., Martian, A., et al: ‘Big data processing for renewable energy telemetry using a decentralized cloud M2M system’, Wirel. Pers. Commun., 2015, 87, (3), pp. 11131128.
    62. 62)
      • 62. Zhao, K., Ge, L.: ‘A survey on the internet of things security’. Proc. – 9th Int. Conf. on Computational Intelligence and Security, CIS 2013, pp. 663667.
    63. 63)
      • 63. Suresh, K., Isaac, E., Babu, M.R.: ‘High performance computing on heterogeneous/multiprocessors system energy-aware design’, 2015, 10, (4), pp. 89418953.
    64. 64)
      • 64. Tan, J., Koo, S.G.M.: ‘A survey of technologies in internet of things’. Proc. – IEEE Int. Conf. on Distributed Computing in Sensor Systems, DCOSS 2014, 2014, pp. 269274.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-net.2017.0105
Loading

Related content

content/journals/10.1049/iet-net.2017.0105
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address