http://iet.metastore.ingenta.com
1887

Comparative study of congestion notification techniques for hop-by-hop-based flow control in data centre Ethernet

Comparative study of congestion notification techniques for hop-by-hop-based flow control in data centre Ethernet

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Networks — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Data centre Ethernet (DCE) is a budding research area that has received considerable attention from the ICT sector. The traditional DCEs are considered unreliable despite being widely used in modern day data centres. In Ethernet intermediate layer 2 switching devices, the outgoing traffic is faster than the incoming traffic and therefore results in packet drops. Ethernet reliability is provided by the upper layer protocols, which is outlaw to the initial concept of the network. As such, various congestion notification (CN) techniques for hop-by-hop-based flow control have been proposed for layer 2 devices to address the issue of silent packet drops. However, a simulation-based evaluation of IEEE standards that solely focus on CN techniques remains lacking. This study investigates CN techniques for layer 2 devices that employ a hop-by-hop-based flow control. It also highlights the challenges confronting CN techniques in determining the optimal buffer threshold. In addition, FCoE protocol and its relation to CN are emphasized. A simulation-based evaluation of IEEE standards (IEEE 802.3x and IEEE 802.1Qbb) is performed on a hop-by-hop-based flow control with the traditional IEEE 802.3 Ethernet under different traffic loads. The parameters, such as throughput, end-to-end delay, and buffer space utilization, are evaluated through a simulation-based comparison.

References

    1. 1)
      • 1. Lee, D., Coleri, S., Dong, X., et al: ‘FLORAX-flow-rate based hop by hop backpressure control for IEEE 802.3x’. Proc. 5th IEEE Int. Conf. High Speed Networks and Multimedia Communications, 2002, pp. 202207.
    2. 2)
      • 2. Wechta, J., Fricker, M., Halsall, F.: ‘Hop-by-hop flow control as a method to improve QoS in 802.3 LANs’. Proc. Seventh Int. Workshop on Quality of Service, IWQoS'99, 1999, pp. 239247.
    3. 3)
      • 3. IEEE: ‘IEEE 802.1Qbb Priority-Based flow control’, 2011.
    4. 4)
      • 4. Cisco White Papers: ‘Priority flow control: build reliable layer-2 infrastructure’, CISCO, 2010.
    5. 5)
      • 5. IEEE: ‘IEEE p802.1Qbb/D2.3, May 2010 (DRAFT Amendment to IEEE Std 802.1Q-2005)’, 2010, pp. 140.
    6. 6)
      • 6. Malhotra, R., van Haalen, R., Mandjes, M., et al: ‘Modeling the interaction of IEEE 802.3x hop-by-hop flow control and TCP end-to-end flow control’. Proc. Next Generation Internet Networks, 2005, pp. 260267.
    7. 7)
      • 7. De Los Santos, G., Uruena, M., Munoz, A., et al: ‘Buffer design under bursty traffic with applications in FCoE storage area networks’, IEEE Commun. Lett., 2013, 17, (2), pp. 413416.
    8. 8)
      • 8. Feuser, O., Wenzel, A.: ‘On the effects of the IEEE 802.3x flow control in full-duplex ethernet LANs’. Proc. Conf. Local Computer Networks, LCN'99, 1999, pp. 160161.
    9. 9)
      • 9. Kesselman, A., Lotker, Z., Mansour, Y., et al: ‘Buffer overflow management in QoS switches’, SIAM J. Comput., 2004, 33, (3), pp. 563583.
    10. 10)
      • 10. Patil, G., McClean, S., Raina, G.: ‘Drop tail and RED queue management with small buffers: stability and Hopf bifurcation’, ICTACT J. Commun. Technol., 2011, 2, (2), pp. 339344.
    11. 11)
      • 11. Kramer, G., Mukherjee, B., Pesavento, G.: ‘IPACT a dynamic protocol for an Ethernet PON (EPON)’, IEEE Commun. Mag., 2002, 40, (2), pp. 7480.
    12. 12)
      • 12. Cao, J., Ramanan, K.: ‘A Poisson limit for buffer overflow probabilities’. Proc. Twenty-First Annual Joint Conf. IEEE Computer and Communications Societies, IEEE INFOCOM, 2002, pp. 9941003.
    13. 13)
      • 13. Athuraliya, S., Low, S.H., Li, V.H., et al: ‘REM: active queue management’, IEEE Netw., 2001, 15, (3), pp. 4853.
    14. 14)
      • 14. Firoiu, V., Borden, M.: ‘A study of active queue management for congestion control’. Proc. Nineteenth Annual Joint Conf. IEEE Computer and Communications Societies. IEEE INFOCOM, 2000, pp. 14351444.
    15. 15)
      • 15. Lakshman, T., Neidhardt, A., Ott, T.J.: ‘The drop from front strategy in TCP and in TCP over ATM’. Proc. Fifteenth Annual Joint Conf. IEEE Computer Societies, Networking the Next Generation. IEEE INFOCOM'96, 1996, pp. 12421250.
    16. 16)
      • 16. Yin, N., Hluchyj, M.G.: ‘Implication of dropping packets from the front of a queue’, IEEE Trans. Commun., 1993, 41, (6), pp. 846851.
    17. 17)
      • 17. Lin, S., Costello, D., Miller, M.: ‘Automatic-repeat-request error-control schemes’, IEEE Commun. Mag., 1984, 22, (12), pp. 517.
    18. 18)
      • 18. Argibay-Losada, P.J., Nozhnina, K., Sahin, G., et al: ‘Using stop-and-wait to improve TCP throughput in fast optical switching (FOS) networks over short physical distances’. Proc. IEEE INFOCOM'14, 2014, pp. 13121320.
    19. 19)
      • 19. Towsley, D.: ‘The stutter go back-N ARQ protocol’, IEEE Trans. Commun., 1979, 27, (6), pp. 869875.
    20. 20)
      • 20. Weldon, E.Jr.: ‘An improved selective-repeat ARQ strategy’, IEEE Trans. Commun., 1982, 30, (3), pp. 480486.
    21. 21)
      • 21. Baccelli, F., Hong, D.: ‘The AIMD model for TCP sessions sharing a common router’. Proc. Annual Allerton Conf. Communication Control and Computing, Citeseer, 2001, pp. 900911.
    22. 22)
      • 22. Yang, Y.R., Lam, S.S.: ‘General AIMD congestion control’. Proc. Int. Conf. Network Protocols, 2000, pp. 187198.
    23. 23)
      • 23. Dumas, V., Guillemin, F., Robert, P.: ‘A Markovian analysis of additive-increase multiplicative-decrease algorithms’, Adv. Appl. Probab., 2002, 34, (1), pp. 85111.
    24. 24)
      • 24. Sreerekha, K., Kiran, V.K.: ‘Mitigating incast congestion with LTTP for many to one communication in data centers’. Proc. 2015 Int. Conf. Innovations in Information, Embedded and Communication Systems (ICIIECS), Coimbatore, 2015, pp. 16.
    25. 25)
      • 25. So-In, C., Jain, R., Jiang, J.: ‘Enhanced forward explicit congestion notification (E-FECN) scheme for datacenter Ethernet networks’. Proc. Int. Symp. Performance Evaluation of Computer and Telecommunication Systems, SPECTS 2008, 2008, pp. 542546.
    26. 26)
      • 26. Jiang, J., Jain, R., So-In, C.: ‘An explicit rate control framework for lossless ethernet operation’. Proc. IEEE Int. Conf. Communications, ICC'08, 2008, pp. 59145918.
    27. 27)
      • 27. Bergamasco, D., Pan, R.: ‘Backward congestion notification version 2.0’. Proc. IEEE 802.1 Meeting, 2005.
    28. 28)
      • 28. ‘Backward Congestion Notification’. Available at https://www.google.com/patents/US8804529, accessed 17 September 2016.
    29. 29)
      • 29. Bergamasco, D.: ‘Ethernet Congestion Manager’, presentation at IEEE 802.1Qau Meeting, March 13, 2007, http://www.ieee802.org/1/files/public/docs2007/au-bergamasco-ecm-v0.1.pdf, (accessed 2 March 2018).
    30. 30)
      • 30. Ren, J.-F., Landry, R.: ‘Flow control and congestion avoidance in switched Ethernet LANs’. Communications, 1997. ICC '97 Montreal, Towards the Knowledge Millennium. 1997 IEEE International Conference on, Montreal, Que., 1997, pp. 508512, vol.1.
    31. 31)
      • 31. IEEE Standards for Local and Metropolitan Area Networks: Supplements to Carrier Sense Multiple Access With Collision Detection (CSMA/CD) Access Method and Physical Layer Specifications - Specification for 802.3 Full Duplex Operation and Physical Layer Specification for 100 Mb/s Operation on Two Pairs of Category 3 Or Better Balanced Twisted Pair Cable (100BASE-T2)," in IEEE Std 802.3x-1997 and IEEE Std 802.3y-1997 (Supplement to ISO/IEC 8802-3: 1996; ANSI/IEEE Std 802.3, 1996 Edition), vol., no., pp.0_1-324, 1997, doi: 10.1109/IEEESTD.1997.95611.
    32. 32)
      • 32. Zhang, Y., Ansari, N.: ‘On architecture design, congestion notification, TCP incast and power consumption in data centers’, IEEE Commun. Surv. Tutorials, 2013, 15, (1), pp. 3964.
    33. 33)
      • 33. ‘Data Center Bridging Task Group’. Available at http://www.ieee802.org/1/pages/dcbridges.html, accessed 19 March 2015.
    34. 34)
      • 34. Bradner, S.: ‘The internet engineering task force’. Open Sources: Voices from the Open Source Revolution, 1999, pp. 4752.
    35. 35)
      • 35. Reinemo, S.A., Skeie, T., Wadekar, M.K.: ‘Ethernet for high-performance data centers: on the new IEEE datacenter bridging standards’, IEEE Micro, 2010, 30, (4), pp. 4251.
    36. 36)
      • 36. Mliki, H., Chaari, L., Kamoun, L.: ‘Modelling and evaluation of QCN using coloured petri nets’, Peer-to-Peer Netw. Appl., 2017, doi: 10.1007/s12083-017-0547-7.
    37. 37)
      • 37. Mliki, H., Chaari, L., Kamoun, L.: ‘QCN performance evaluation for unicast traffic transmission’. Proc. 30th Int. Conf. Advanced Information Networking and Applications Workshops (WAINA), Crans-Montana, 2016, pp. 431438.
    38. 38)
      • 38. Ruan, C., Wang, J., Jiang, W., et al: ‘FSQCN: fast and simple quantized congestion notification in data center Ethernet’, J. Netw. Comput. Appl., 2017, 83, pp. 5362.
    39. 39)
      • 39. Pistirica, S.A., Poncea, O., Caraman, M.C.: ‘QCN based dynamically load balancing: QCN weighted flow queue ranking’. Proc. 20th Int. Conf. Control Systems and Computer Science, Bucharest, 2015, pp. 197204.
    40. 40)
      • 40. Ren, Y., Zhao, Y., Liu, P., et al: ‘A survey on TCP Incast in data center networks’, Int. J. Commun. Syst., 2014, 27, pp. 11601172.
    41. 41)
      • 41. Mliki, H., Chaari, L., Kamoun, L.: ‘A comprehensive survey on carrier Ethernet congestion management mechanism’, J. Netw. Comput. Appl., 2015, 47, pp. 107130.
    42. 42)
      • 42. Avci, S.N., Li, Z., Liu, F.: ‘Congestion aware priority flow control in data center networks’. Proc. IFIP Networking Conf. (IFIP Networking) and Workshops, Vienna, 2016, pp. 126134.
    43. 43)
      • 43. Bahnasy, M.M., Beliveau, A., Alleyne, B., et al: ‘Using Ethernet commodity switches to build a switch fabric in routers’. Proc. 24th Int. Conf. Computer Communication and Networks (ICCCN), Las Vegas, NV, 2015, pp. 18.
    44. 44)
      • 44. Mishra, P.P., Kanakia, H.: ‘A hop by hop rate-based congestion control scheme’, ACM SIGCOMM Comput. Commun. Rev., 1992, 22, (4), pp. 112123.
    45. 45)
      • 45. Noureddine, W., Tobagi, F.: ‘Selective back-pressure in switched Ethernet LANs’. Proc. Global Telecommunications Conf., GLOBECOM'99, 1999, pp. 12561263.
    46. 46)
      • 46. Wechta, J., Eberlein, A., Halsall, F.: ‘The interaction of the TCP flow control procedure in end nodes on the proposed flow control mechanism for use in IEEE 802.3 switches’. Proc. High Performance Networking, 1998, pp. 515534.
    47. 47)
      • 47. Mahdavi, J.: ‘TCP-friendly unicast rate-based flow control’, 1997. Available at http://www.psc.edu/networking/papers/tcpfriendly.html, accessed 12 December 2014.
    48. 48)
      • 48. Wechta, J., Eberlein, A., Halsall, F., et al: ‘Simulation-based analysis of the interaction of end-to-end and hop-by-hop flow control schemes in packet switching LANs’. Proc. Fifteenth UK Teletraffic Symp. Performance Engineering in Information Systems, Citeseer, 1998.
    49. 49)
      • 49. Jiang, W., Ren, F., Wu, Y., et al: ‘Analysis of backward congestion notification with delay for enhanced Ethernet networks’, IEEE Trans. Comput., 2014, 63, (11), pp. 26742684.
    50. 50)
      • 50. Jiang, W., Ren, F., Wu, Y., et al: ‘Analysis of backward congestion notification with delay for enhanced ethernet networks’. Proc. lNFOCOM'12, 2012, pp. 29612965.
    51. 51)
      • 51. Benito, M., Vallejo, E., Beivide, R., et al: ‘Extending commodity OpenFlow switches for large-scale HPC deployments’. Proc. IEEE 3rd Int. Workshop on High-Performance Interconnection Networks in the Exascale and Big-Data Era (HiPINEB), Austin, TX, 2017, pp. 4148.
    52. 52)
      • 52. Pazos, C.M., Sanchez Agrelo, J.C., Gerla, M.: ‘Using back-pressure to improve TCP performance with many flows’. Proc. Eighteenth Annual Joint Conf. IEEE Computer and Communications Societies, INFOCOM'99, 1999, pp. 431438.
    53. 53)
      • 53. Chang, S.-H., Ting, W.-C., Chuang, C.-Y., et al: ‘Block-based fair queuing: an efficient network QoS provisioning algorithm for high-speed data transmission’. Proc. Int. Workshop Technical Committee on Communications Quality and Reliability (CQR), 2012, pp. 16.
    54. 54)
      • 54. Jonsson, M., Kunert, K.: ‘Wired and wireless reliable real-time communication in industrial systems’, 2010. Available at http://www.diva-portal.org/smash/get/diva2:234210/FULLTEXT01.pdf, accessed 30 January 2016.
    55. 55)
      • 55. Chen, J., Hu, C., Ji, Z.: ‘Self-tuning random early detection algorithm to improve performance of network transmission’, Math. Probl. Eng., 2011, 2011.
    56. 56)
      • 56. Sarkar, S., Prasad, S.: ‘Packet delay analysis in operational network’. Proc. Int. Conf. Computing Communication and Networking Technologies (ICCCNT), 2010, pp. 14.
    57. 57)
      • 57. IEEE: ‘IEEE 802.1Qau congestion notification’, 2010.
    58. 58)
      • 58. Alizadeh, M., Atikoglu, B., Kabbani, A., et al: ‘Data center transport mechanisms: congestion control theory and IEEE standardization’. Proc. 46th Annual Allerton Conf. Communication, Control, and Computing, Urbana-Champaign, IL, 2008, pp. 12701277.
    59. 59)
      • 59. IEEE 802.1Qau: ‘IEEE p802.1Qau/D2.4, December 2009 (DRAFT amendment to IEEE Std 802.1Q-2005)’, 2009.
    60. 60)
      • 60. IEEE Computer Society: ‘IEEE std 802.1Qau amendment 13: congestion notification. Local and metropolitan area networks-virtual bridged local area networks’, 2010.
    61. 61)
      • 61. Mliki, H., Chaari, L., Kamoun, L., et al: ‘Performance evaluation of legacy QCN for multicast and multiple unicast traffic transmission’, Int. J. Netw. Manage., 2016, 26, pp. 199223.
    62. 62)
      • 62. Matsushima, K., Hirata, K., Yamamoto, M.: ‘Fairness improvement of multiple-bottleneck flow in data center networks’, IEICE Trans. Commun., 2016, 99, (7), pp. 14451454.
    63. 63)
      • 63. IEEE: ‘IEEE 802.1Q-2005 standard, virtual bridged local area networks, book IEEE 802.1Q-2005 standard, virtual bridged local area networks, series IEEE 802.1Q-2005 standard, virtual bridged local area networks’, 2006.
    64. 64)
      • 64. DeSanti, C., Jiang, J.: ‘FCoE in perspective’. Proc. Int. Conf. Advanced Infocomm Technology, 2008, p. 138.
    65. 65)
      • 65. Jiang, J., DeSanti, C.: ‘The role of FCoE in I/O consolidation’. Proc. Int. Conf. Advanced Infocomm Technology, 2008, p. 87.
    66. 66)
      • 66. Shuja, J., Madani, S.A., Bilal, K., et al: ‘Energy-efficient data centers’, Computing, 2012, 94, (12), pp. 973994.
    67. 67)
      • 67. McCanne, S., Floyd, S., Fall, K., et al: ‘Network simulator ns-2’, Book Network simulator ns-2. Series Network simulator ns-2, Editor ed., 1997, http://www.isi.edu/nsnam/ns, (accessed 2 March 2018).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-net.2017.0101
Loading

Related content

content/journals/10.1049/iet-net.2017.0101
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address