access icon free Experimental evaluation of the impact of mobility management protocols on HTTP adaptive streaming

Video content is increasingly being consumed on the move using mobile devices such as smart phones and tablets. In order to deal with the challenges of heterogeneity of network access technologies and fluctuating resources, which are inherent features of mobile communication, HTTP adaptive streaming (HAS) is becoming the default technology for online video streaming. However, little research has been carried out to better understand the impact of handover schemes of the various mobility management protocols on the video quality of HAS. In this study, the authors present a comprehensive experimental measurement of the impact of handover on three representative HAS players. First, they implement three existing mobility management protocols, MIPv6, LISP-MN and PMIPv6, on a network testbed. Using the fluid flow mobility model, the impact of frequent handover on the average video quality, the bandwidth utilisation and stability of the players was investigated. Their results show a degradation of all the observed parameters in all the reviewed players.

Inspec keywords: transport protocols; mobility management (mobile radio); hypermedia; video streaming; smart phones

Other keywords: LISP-MN; HTTP adaptive streaming; network access technologies; online video streaming; fluctuating resources; network testbed; player stability; tablets; fluid flow mobility model; video quality; HAS; MIPv6; mobile communication; bandwidth utilisation; mobility management protocols; smart phones; mobile devices; PMIPv6; handover schemes; video content

Subjects: Video on demand and video servers; Mobile radio systems; Protocols; Network management

References

    1. 1)
      • 20. Zhou, L., Hu, R.Q., Qian, Y., et al: ‘Energy-spectrum efficiency tradeoff for video streaming over mobile ad hoc networks’, IEEE J. Sel. Areas Commun., 2013, 31, (5), pp. 981991.
    2. 2)
      • 17. Slextensions adaptive streaming. Available at https://slextensions.svn.codeplex.com/svn/trunk/SLExtensions/AdaptiveStreaming, accessed March 2014.
    3. 3)
      • 24. An open-source lisp implemantation for linux, android and openwrt. Available at http://lispmob.org, accessed 31 May 2015.
    4. 4)
      • 14. Akhshabi, S., Anantakrishnan, L., Begen, A.C., et al: ‘What happens when http adaptive streaming players compete for bandwidth?’. NOSSDAV ‘12, 2012, pp. 914.
    5. 5)
      • 13. Thang, T.C., Ho, Q.-D., Kang, J.W., et al: ‘Adaptive streaming of audiovisual content using mpeg dash’, IEEE Trans. Consum. Electron., 2012, 58, (1), pp. 7885.
    6. 6)
      • 2. Ali-Ahmad, H., Cicconetti, C., La Oliva, A., et al: ‘Crowd: an sdn approach for densenets’, IEEE Second European Workshop on Software Defined Networks (EWSDN), 2013, pp. 2531.
    7. 7)
      • 19. Nguyen, D.M., Tran, L.B., Le, H.T., et al: ‘An evaluation of segment duration effects in http adaptive streaming over mobile networks’. 2015 2nd National Foundation for Science and Technology Development Conf. on Information and Computer Science (NICS), 2015, pp. 248253.
    8. 8)
      • 27. Dobrian, F., Sekar, V., Awan, A., et al: ‘Understanding the impact of video quality on user engagement’, ACM SIGCOMM Comput. Commun. Rev., 2011, 41, (4), pp. 362373.
    9. 9)
      • 21. Akyildiz, I.F., Wang, W.: ‘A dynamic location management scheme for next-generation multitier pcs systems’, IEEE Trans. Wirel. Commun., 2002, 1, (1), pp. 178189, doi:10.1109/7693.975456.
    10. 10)
      • 3. Gao, Z., Venkataramani, A., Kurose, J., et al: ‘Towards a quantitative comparison of the cost-benefit trade-offs of location-independent network architectures’, Technical report, School of Computer Science, University of Masachusetts, Amherst MA 01003, 2014.
    11. 11)
      • 9. Biernacki, A., Tutschku, K.: ‘Performance of http video streaming under different network conditions’, Multimedia Tools Appl.., 2013, 72, (2), pp. 11431166.
    12. 12)
      • 16. Sani, Y., Mauthe, A., Edwards, C.: ‘Modelling video rate evolution in adaptive bitrate selection’. The IEEE Int. Symp. on Multimedia (ISM 2015), 2015, pp. 8994.
    13. 13)
      • 31. comscore releases january 2014 u.s. online video rankings. Available at http://www.comscore.com/Insights/Press-Releases/2014/2/comScore-Releases-January 2014-US-Online-Video-Rankings, accessedJune 2016.
    14. 14)
      • 25. Openairinterface proxy mobile ipv6. Available at http://www.umip.org/contrib/umip-oai-pmipv6.html, accessedDecember 2015).
    15. 15)
      • 29. Seufert, M., Egger, S., Slanina, M., et al: ‘A survey on quality of experience of http adaptive streaming’, IEEE Commun. Surv. Tutor., 2015, 17, (1), pp. 469492.
    16. 16)
      • 8. Mpeg dash specification (iso/iec 23009-1 : 2012) dynamic adaptive streaming over http (dash) part 1: Media presentation description and segment formats, Technical report, 2012.
    17. 17)
      • 7. Gundavelli, S., Leung, K., Devarapalli, V., et al: ‘Proxy mobile ipv6’. Technical report, RFC 5213, August 2008.
    18. 18)
      • 30. Isah, M., Edwards, C.: ‘Inter-domain mobility with lisp-mn – a performance comparison with mipv6’. 2015 8th IFIPWireless and Mobile Networking Conf. (WMNC), 2015, pp. 8087.
    19. 19)
      • 10. Gorius, M., Shuai, Y., Herfet, T.: ‘Dynamic media streaming over wireless and mobile ip networks’. IEEE Int. Conf. on Consumer Electronics – Berlin (ICCEBerlin), 2012, 2012, pp. 158162, doi:10.1109/ICCE-Berlin.2012.6336461.
    20. 20)
      • 1. Cisco Visual Networking Index: Global mobile data traffic forecast update, 2016–2021 white paper, April 2016.
    21. 21)
      • 22. How do i know how fast i am walking?. Available at http://walking.about.com/od/measure/f/howfastwalking.htm, accessed January 2014).
    22. 22)
      • 28. Tian, G., Liu, Y.: ‘Towards agile and smooth video adaptation in dynamic http streaming’. Proc. of the 8th Int. Conf. on Emerging Networking Experiments and Technologies, 2012, pp. 109120.
    23. 23)
      • 5. Perkins, C., Johnson, D., Arkko, J.: ‘Rfc 6275: mobility support in ipv6, Internet Engineering Task Force (IETF)’.
    24. 24)
      • 18. Miller, K., Quacchio, E., Gennari, G., et al: ‘Adaptation algorithm for adaptive streaming over http’. 19th Int. Packet VideoWorkshop (PV), 2012, 2012, pp. 173178.
    25. 25)
      • 15. Huang, T.-Y., Johari, R., McKeown, N.: ‘Downton abbey without the hiccups: buffer-based rate adaptation for http video streaming’. Proc. of the 2013 ACM SIGCOMM Workshop on Future Human-Centric Multimedia Networking, 2013, pp. 914.
    26. 26)
      • 4. Gladisch, A., Daher, R., Tavangarian, D.: ‘Survey on mobility and multihoming in future internet’, Wirel. Pers. Commun., 2014, 74, (1), pp. 4581.
    27. 27)
      • 26. Lederer, S., Muller, C., Timmerer, C.: ‘Dynamic adaptive streaming over http dataset’. Proc. of the 3rd Multimedia Systems Conf., 2012, pp. 8994.
    28. 28)
      • 23. Mobile ipv6 and nemo basic support implementation for linux. Available at http://www.umip.org/, accessed 12 June 2014.
    29. 29)
      • 6. Farinacci, D., Fuller, V., Meyer, D., et al: ‘Rfc 6830: The locator, ID Separation Protocol (LISP)’.
    30. 30)
      • 11. E. U. T. R. Access, and evolved universal terrestrial radio access network (e-utran), Overall description 126.
    31. 31)
      • 12. Akhshabi, S., Begen, A.C., Dovrolis, C.: ‘An experimental evaluation of rate-adaptation algorithms in adaptive streaming over http’. MMSys'11, New York, NY, USA, 2011, pp. 157168, doi:10.1145/1943552.1943574. Available at http://doi.acm.org/10.1145/1943552.1943574.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-net.2016.0119
Loading

Related content

content/journals/10.1049/iet-net.2016.0119
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading