Review and retrofitted architectures to form reliable smart microgrid networks for urban buildings

Review and retrofitted architectures to form reliable smart microgrid networks for urban buildings

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Networks — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Smart microgrid initiatives for recent urbanisation at power distribution level need an integrated and interoperable environment that can work collectively with local energy systems and utility grid. This is achieved through the design of an architecture by using contemporary information and communication technology. System architecture provides a common work process that span across all the critical subsystems of a building for better informed decisions with reduced human interventions. Two key aspects of architecture development are, the way of its presentation and network reliability. The architecture should be clear in its presentation for the understanding of various stakeholders and possess fault tolerant communication mechanisms to have high network reliability. Considering aforementioned aspects, this study presents review of state-of-the-art architectures developed by IEEE-1547, ISA-95, National Institute of Standards and Technology, IEC-61850 for smart microgrids formation and suggests retrofitted architectures to improve architecture clarity by presenting in a more lucid way and network reliability by the concept of redundant communication paths.


    1. 1)
      • 1. Giustina, D.D., Ferrari, P., Flammini, A., et al: ‘Automation of distribution grids with IEC 61850: a first approach using broadband power line communication’, IEEE Trans. Instrum., 2013, 62, (9), pp. 23722383. Available at
    2. 2)
      • 2. Greefhorst, D., Proper, E.: ‘The role of enterprise architecture’, in Pietz, J.L.G., Proper, E., Tribolet, J. (Eds.): ‘Architecture principles’ (Springer, 2011), pp. 729. Available at http: //, vol. 4.
    3. 3)
      • 3. IEEE1471-2000: ‘IEEE recommended practice for architecture description of software-intensive systems’, 2000. Available at http: //
    4. 4)
      • 4. Kande, M.M., Crettaz, V., Strohmeier, A., et al: ‘Bridging the gap between IEEE 1471, an architecture description language and UML’, J. Softw. Syst. Model., 2002, 1, (2), pp. 113129. Available at
    5. 5)
      • 5. Kumar, Y.V.P., Ravikumar, B.: ‘Review and refined architectures for monitoring, information exchange, and control of interconnected distributed resources’. Proc. Springer 23rd Int. Conf. Systems Engineering, Las Vegas, USA, 2014, pp. 383389. Available at
    6. 6)
      • 6. Jacobson, I., Booch, G., Rumbaugh, J.: ‘The unified software development process’ (Addison-Wesley Professional, 1999, 1st edn.).
    7. 7)
      • 7. IEEE 1547.3-2007: ‘IEEE guide for monitoring, information exchange, and control of distributed resources interconnected with electric power systems’, 2007. Available at
    8. 8)
      • 8. ANSI/ISA-95: ‘Enterprise control system integration’, 2013. Available at
    9. 9)
      • 9. NIST smart grid conceptual model’, Available at, accessed March 2015.
    10. 10)
      • 10. NIST framework and roadmap for smart grid interoperability standards’, available at, accessed March 2015.
    11. 11)
      • 11. IEC 61850: ‘Communication networks and systems for power utility automation’, 2013.
    12. 12)
      • 12. Yoo, B.K., Seung, Y.H., Hyo-Sik, Y., et al: ‘Communication architecture of the IEC 61850-based micro grid system’, J. Electr. Eng. Tech., 2011, 6, (5), pp. 605612. Available at
    13. 13)
      • 13. Smart grid challenges, available at, accessed June 2015.
    14. 14)
      • 14. Leite, J.B., Mantovani, J.R.S.: ‘Development of a smart grid simulation environment, Part I: project of the electrical devices simulator’, J. Control Autom. Electr. Syst., 2015, 26, (1), pp. 8095. Available at
    15. 15)
      • 15. Parker, B.M., Gilmour, S.G., Schormans, J.: ‘Utility based framework for optimal network measurement’, IET Netw., 2015, 4, (1), pp. 1020. Available at
    16. 16)
      • 16. Wang, J., Yan, Y., Dittmann, L.: ‘Design of energy efficient optical networks with software enabled integrated control plane’, IET Netw., 2015, 4, (1), pp. 3036. Available at
    17. 17)
      • 17. Kamrul, I.M., Ouedraogo, I.A., Oki, E.: ‘Smart failure insensitive routing: smart failure insensitive routing to enhance resource utilization and robustness’, IET Netw., 2013, 2, (2), pp. 4552. Available at
    18. 18)
      • 18. Ansari, M.S., Mahani, A., Kavian, Y.S.: ‘Energy-efficient network design via modelling: optimal designing point for energy, reliability, coverage and end-to-end delay’, IET Netw., 2013, 2, (1), pp. 1118. Available at
    19. 19)
      • 19. Shang, W., Ding, Q., Marianantoni, A., et al: ‘Securing building management systems using named data networking’, IEEE Netw., 2014, 28, (3), pp. 5056. Available at
    20. 20)
      • 20. Meng, W., Ruofei, M., Chen, H.H.: ‘Smart grid neighborhood area networks: a survey’, IEEE Netw., 2014, 28, (1), pp. 2432. Available at
    21. 21)
      • 21. Daojing, H., Chan, S., Zhang, Y., et al: ‘An enhanced public key infrastructure to secure smart grid wireless communication networks’, IEEE Netw., 2014, 28, (1), pp. 1016. Available at
    22. 22)
      • 22. Sidhu, T.S., Kanabar, M.G., Parikh, P.P.: ‘Implementation issues with IEC 61850 based substation automation systems’. Proc. 15th Nat. Power Sys. Conf., Mumbai, India, 2008, pp. 473478. Available at
    23. 23)
      • 23. Sabbah, A.I., El-Mougy, A., Ibnkahla, M.: ‘A survey of networking challenges and routing protocols in smart grids’, IEEE Trans. Ind. Inf., 2014, 10, (1), pp. 210221. Available at
    24. 24)
      • 24. Reddy, Y.J., Ramsesh, A., Raju, K.P., et al: ‘A novel approach for modeling and simulation of hybrid power systems using PLCs and SCADA for hardware in the loop test’. Proc. IET Int. Conf. Sustainable Energy and Intelligent System, Chennai, India, 2011, pp. 545553. Available at
    25. 25)
      • 25. Madureira, A., Seca, L., Lopes, J.P.: ‘Coordinated voltage control in distribution systems under the smart grid concept’. Proc. IET CIRED Workshop on Integration of Renewables into the Distribution Grid, Lisbon, Portugal, 2012, pp. 14. Available at
    26. 26)
      • 26. Koen, K., Stamatis, K., David, N., et al: ‘Smart houses for a smart grid’. Proc. IET 20th Int. Conf. and Exhibition Electricity Distribution, Prague, Czech Republic, 2009, pp. 14.
    27. 27)
      • 27. Lopez, G., Moura, P., Moreno, J., et al: ‘Monitoring system for the local distributed generation infrastructures of the smart grid’. Proc. IET 22nd Int. Conf. and Exhibition Electricity Distribution, Stockholm, Sweden, 2013, pp. 14. Available at
    28. 28)
      • 28. Portela, C.M., Rooden, H., Kohlmann, J., et al: ‘A flexible, privacy enhanced and secured ICT architecture for a smart grid project with active consumers in the city of Zwolle-NL’. Proc. IET 22nd Int. Conf. and Exhibition Electricity Distribution, Stockholm, Sweden, 2013, pp. 14. Available at
    29. 29)
      • 29. Liu, J., Xiao, Y., Gao, J.: ‘Achieving accountability in smart grid’, IEEE Syst. J., 2014, 8, (2), pp. 493508. Available at
    30. 30)
      • 30. Kumar, Y.V.P., Ravikumar, B.: ‘Renewable energy based microgrid system sizing and energy management for green buildings’, J. Modern Power Syst. Clean Energy, 2015, 3, (1), pp. 113. Available at
    31. 31)
      • 31. Reddy, Y.J., Kumar, Y.V.P., Raju, K.P., et al: ‘Retrofitted hybrid power system design with renewable energy sources for buildings’, IEEE Trans. Smart Grid, 2012, 3, (4), pp. 21742187. Available at
    32. 32)
      • 32. Bejestani, A.K., Annaswamy, A., Samad, T.: ‘A hierarchical transactive control architecture for renewables integration in smart grids’, IEEE Trans. Smart Grid, 2014, 5, (4), pp. 20542065. Available at
    33. 33)
      • 33. Nick, R., Woods, E.: ‘Software systems architecture-working with stakeholders using viewpoints and perspectives’ (Addison-Wesley publications, 2011, 2nd edn.).
    34. 34)
      • 34. Pagani, G.A., Aiello, M.: ‘Service orientation and the smart grid state and trends’, J. Service Oriented Comput. Appl., 2012, 6, (3), pp. 267282. Available at
    35. 35)
      • 35. Amaro, M.J., Machado, R.J.: ‘A software framework for supporting ubiquitous business processes: an ANSI/ISA-95 approach’. Proc. IEEE Eighth Int. Conf. Quality of Information and Communications Technology, Lisbon, Portugal, 2012, pp. 359364. Available at
    36. 36)
      • 36. Rathwell, G.: ‘ISA-95-setting the stage for integration of MES and ICD systems’. Proc. IET Sem. Enterprise Integration of Control Systems, Coventry, England, 2006, pp. 113114.
    37. 37)
      • 37. ANSI/ISA 99.02.01: ‘Security for industrial automation and control systems: establishing an industrial automation and control systems security program’, 2009.
    38. 38)
      • 38. Energy Independence and Security Act, US Department of Energy, 2007. Available at, accessed June 2015.
    39. 39)
      • 39. Albano, M., Ferreira, L.L., Pinho, L.M.: ‘Convergence of smart grid ICT architectures for the last mile’, IEEE Trans. Ind. Inf., 2015, 11, (1), pp. 187197. Available at
    40. 40)
      • 40. CEN/CENELEC/ETSI smartgrid reference architecture’, Available at, accessed March 2015.
    41. 41)
      • 41. Uslar, M., Bleiker, R.: ‘Automation for the smart grid: IEC 61850 – substation automation and DER communication’, in ‘Standardization in smart grids’ (Springer, 2013), pp. 115128. Available at
    42. 42)
      • 42. Gungor, V.C., Sahin, D., Kocak, T., et al: ‘Smart grid technologies: communication technologies and standards’, IEEE Trans. Ind. Inf., 2011, 7, (4), pp. 529539. Available at
    43. 43)
      • 43. Pedrasa, M.A.A., Spooner, T.D., MacGill, I.F.: ‘Coordinated scheduling of residential distributed energy resources to optimize smart home energy services’, IEEE Trans. Smart Grid, 2010, 1, (2), pp. 134143. Available at
    44. 44)
      • 44. Lu, W., Yangdong, Z., Weixing, L., et al: ‘Design and application of microgrid operation control system based on IEC 61850’, J. Modern Power Syst. Clean Energy, 2014, 2, (3), pp. 256263. Available at
    45. 45)
      • 45. Hawrylak, P.J., Nivethan, J., Papa, M.: ‘Automating electric substations using IEC 61850’, in Pappu, V., Carvalho, M., Pardalos, P. (Eds.): ‘Optimization and security challenges in smart power grids’ (Springer, 2013), pp. 117140. Available at
    46. 46)
      • 46. Riverbed application and network performance management solutions’, Available at, accessed March 2015.
    47. 47)
      • 47. Sidhu, T.S., Yin, Y.: ‘Modelling and simulation for performance evaluation of IEC61850-based substation communication systems’, IEEE Trans. Power Deliv., 2007, 22, (3), pp. 14821489. Available at

Related content

This is a required field
Please enter a valid email address