access icon free Group-based cognitive radio network formation without common channels

To form cognitive radio nodes into a wireless ad-hoc network, generally, globally or locally common channels are assumed to be available or some channels are dynamically selected as locally common ones. However, a cognitive radio node is not licensed to any channel for communication. With dynamic channel availability, neither locally nor globally common channels could be assumed available. Therefore, in this study, a new approach for cognitive radio network formation is presented that is not constrained by the availability of common channels. The proposed approach is based on the ‘group’ concept. Activated cognitive radio nodes form multiple ‘groups’ according to some criteria. Each group consists of a head node, some gateway nodes and ordinary nodes. During sensing phase, nodes sense channels and negotiate the channel and time slot assignment; thus, during data transmitting phase, each node is able to communicate with its different neighbour nodes in assigned channels during given time slots. Hence, nodes can be connected together to form a network without common channels and the network connectivity is improved. This study presents the network forming process including neighbour node detection, node communication, group formation, time slot assignment, channel assignment and medium access control protocol. Finally, simulations are conducted to investigate the network connectivity.

Inspec keywords: cognitive radio; access protocols; wireless channels; ad hoc networks

Other keywords: wireless ad-hoc network; channel assignment; ordinary nodes; group formation; dynamic channel availability; data transmitting phase; sensing phase; network connectivity; head node; medium access control protocol; gateway nodes; group-based cognitive radio network formation; time slot assignment; node communication; network forming process; cognitive radio nodes; neighbour node detection

Subjects: Radio links and equipment; Protocols

References

    1. 1)
    2. 2)
      • 14. Altamimi, M., Naik, K., Shen, X.: ‘Parallel link rendezvous in ad hoc cognitive radio networks’. Proc. IEEE GLOBECOM 2010, December 2010, pp. 16.
    3. 3)
      • 23. Chao, C.-M., Fu, H.-Y.: ‘Providing complete rendezvous guarantee for cognitive radio networks by quorum systems and Latin squares’. Proc. IEEE WCNC 2013, April 2013, pp. 95100.
    4. 4)
    5. 5)
      • 44. http://www.standards.ieee.org/getieee802/download/802.11-2012.pdf, accessedJanuary 2013.
    6. 6)
    7. 7)
    8. 8)
    9. 9)
    10. 10)
      • 16. Bahl, P., Chandra, R., Dunagan, J.: ‘SSCH: Slotted seeded channel hopping for capacity improvement in IEEE 802.11 ad-hoc wireless networks’. Proc. ACM MobiCom., New York, USA, 2004, pp. 216230.
    11. 11)
      • 49. Bettstetter, C.: ‘On the minimum node degree and connectivity of a wireless multihop network’. Proc. ACM MobiHoc, June 2002, pp. 8091.
    12. 12)
      • 42. Chen, T., Zhang, H.: ‘Swarm intelligence based dynamic control channel assignment in cogmesh’. Proc. IEEE ICC 2008, Beijing, China, 2008, pp. 123128.
    13. 13)
      • 37. Chen, S., Russell, A., Samanta, A., et al: ‘Deterministic blind rendezvous in cognitive radio networks’. Proc. IEEE ICDCS 2014, July 2014, pp. 358367.
    14. 14)
      • 30. Song, Y., Xie, J.L.: ‘BRACER: a distributed broadcast protocol in multi-hop cognitive radio ad hoc networks with collision avoidance’, IEEE Trans. Mob. Comput., 2014, An early access article.
    15. 15)
    16. 16)
      • 10. Lazos, L., Liu, S., Krunz, M.: ‘Spectrum opportunity-based control channel assignment in cognitive radio networks’. Proc. SECON 2009, June 2009, pp. 19.
    17. 17)
    18. 18)
      • 3. Naveed, A., Kanhere, S.S., Jha, S.K.: ‘Topology control and channel assignment in multi-radio multi-channel wireless mesh networks’. Proc. IEEE Int. Conf. Mobile Adhoc and Sensor Systems, 2007, pp. 19.
    19. 19)
    20. 20)
    21. 21)
    22. 22)
    23. 23)
    24. 24)
    25. 25)
      • 4. Zhu, J., Roy, S.: ‘802.11 mesh networks with two-radio access points’. Proc. ICC 2005, May 2005, pp. 36093615.
    26. 26)
    27. 27)
    28. 28)
    29. 29)
      • 22. Romaszko, S., Mahonen, P.: ‘Grid-based channel mapping in cognitive radio ad hoc networks’. Proc. IEEE PIMRC 2011, September 2011, pp. 438444.
    30. 30)
      • 41. Zhao, J., Zheng, H., Yang, G.: ‘Distributed coordination in dynamic spectrum allocation networks’. Proc. IEEE DySPAN 2005, Baltimore, USA, 2005, pp. 259268.
    31. 31)
      • 19. Lin, Z., Liu, H., Chu, X., et al: ‘Jump-stay based channel hopping algorithm with guaranteed rendezvous for cognitive radio networks’. Proc. IEEE INFOCOM, 2011, pp. 24442452.
    32. 32)
      • 6. Sheu, P.-R., Wang, C.-W.: ‘A stable clustering algorithm based on link stability for mobile Ad Hoc networks’, J. Internet Technol., 2008, 9, (3), pp. 257266.
    33. 33)
    34. 34)
      • 40. dos Santos, P.M.R., Kalil, M.A., Artemenko, O., Lavrenko, A., Mitschele-Thiel, A.: ‘Self-organized common control channel design for Cognitive Radio Ad Hoc Networks’. Proc. IEEE PIMRC 2013, September 2013, pp. 24192423.
    35. 35)
      • 17. DaSilva, L.A., Guerreiro, I.: ‘Sequence-based rendezvous for dynamic spectrum access’. Proc. IEEE DySPAN 2008, October 2008, pp. 17.
    36. 36)
    37. 37)
      • 20. Guedes, R.M., da Silva, M.W.R., Coutinho, P.S., et al: ‘Agnostic broadcast rendezvous for cognitive radio networks using channel hopping’. Proc. IEEE 37th Conf. on LCN, October 2012, pp. 643650.
    38. 38)
    39. 39)
    40. 40)
    41. 41)
      • 26. Shih, C.-F., Wu, T.-Y., Liao, W.: ‘DH-MAC: a dynamic channel hopping MAC protocol for cognitive radio networks’. Proc. ICC 2010, May 2010, pp. 15.
    42. 42)
      • 7. Chen, T., Zhang, H., Maggio, G.M., Chlamtac, I.: ‘CogMesh: a cluster-based cognitive radio network’. Proc. IEEE DySPAN 2007, April 2007, pp. 168178.
    43. 43)
    44. 44)
    45. 45)
    46. 46)
    47. 47)
    48. 48)
      • 25. Song, Y., Xie, J.: ‘Common hopping based proactive spectrum handoff in cognitive radio ad hoc networks’. Proc. IEEE GLOBECOM 2010, December 2010, pp. 15.
    49. 49)
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-net.2014.0024
Loading

Related content

content/journals/10.1049/iet-net.2014.0024
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading