Performance analysis of collision alleviating distributed coordination function protocol in congested wireless networks – a Markov chain analysis

Performance analysis of collision alleviating distributed coordination function protocol in congested wireless networks – a Markov chain analysis

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Networks — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

IEEE 802.11 is the most popular wireless local area network (WLAN) standard in use. WLANs support broadband multimedia communication and hence providing quality of service requirements such as good throughput and minimum end-to-end delay are the two main challenging issues in designing of WLAN protocols for supporting real-time applications. Until now, several Markov chain models have been developed to evaluate and to enhance the performance of the IEEE 802.11 distributed coordination function (DCF) protocol. However, these models cannot accurately predict the performance of the network. Also, the existing models suffer with high packet collisions resulting in degradation of throughput and end-to-end delay particularly under congested environments. This study proposes an exact Markov chain model to accurately predict the performance of the wireless networks. To alleviate the collisions and to avoid channel capture effect, the authors introduce a post-backoff stage to provide inter packet backoff (IPB) delay between successive packet transmissions. The analysis is carried out by considering the non-saturated traffic and the impact of channel errors because of Rayleigh fading. Results show significant improvement in throughput and reduction in delay using the proposed model when compared with the existing models.


    1. 1)
      • 1. Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications, ANSI/IEEE Std. 802.11, 1999.
    2. 2)
      • 2. Bianchi, G.: ‘IEEE 802.11 saturation throughput analysis’, IEEE Commun. Lett., 1998, 2, (12), pp. 318320 (doi: 10.1109/4234.736171).
    3. 3)
      • 3. Bianchi, G.: ‘Performance analysis of the IEEE 802.11 distributed coordination function’, IEEE J. Sel. Areas Commun., 2000, 18, (3), pp. 535547 (doi: 10.1109/49.840210).
    4. 4)
      • 4. Wu, H., Peng, Y., Long, K., Cheng, S., Ma, J.: ‘Performance of reliable transport protocol over IEEE 802.11 wireless LAN: Analysis and enhancement’. Proc. IEEE INFOCOM, 2002, vol. 2, pp. 599607.
    5. 5)
      • 5. Ziouva, E., Antonakopoulos, T.: ‘CSMA/CA performance under high traffic conditions: throughput and delay analysis’, Comput. Commun., 2002, 25, (3), pp. 313321 (doi: 10.1016/S0140-3664(01)00369-3).
    6. 6)
      • 6. Cantieni, G.R., Ni, Q., Barakat, C., Turletti, T.: ‘Performance analysis under finite load and improvement for multirate 802.11’, Elsevier Comput. Commun. J., 2005, 28, (10), pp. 10951109 (doi: 10.1016/j.comcom.2004.07.023).
    7. 7)
      • 7. Duffy, K., Malone, D., Leith, D.J.: ‘Modeling the 802.11 distributed coordination function with heterogeneous finite load’. Proc. Workshop of Resource Allocation in Wireless Networks (RAWNET), 2005, Trento.
    8. 8)
      • 8. Liaw, Y.S., Dadej, A., Jayasuriya, A.: ‘Performance analysis of IEEE 802.11 DCF under limited load’. Asia-Pacific Conf. on Commun., October 2005, vol. 1, pp. 759763.
    9. 9)
      • 9. Chatzimisios, P., Boucouvalas, A., Vitsas, V.: ‘Throughput and delay analysis of IEEE 802.11 protocol’. 2002, IWNA, pp. 168174.
    10. 10)
      • 10. Dong, X.J., Varaiya, P.: ‘Saturation throughput analysis of IEEE 802.11 wireless LANs for a lossy channel’, IEEE Commun. Lett., 2005, 9, (2), pp. 100102 (doi: 10.1109/LCOMM.2005.02011).
    11. 11)
      • 11. Zheng, Y., Lu, K., Wu, D., Fang, Y.: ‘Performance analysis of IEEE 802.11 DCF in imperfect channels’, IEEE Trans. Veh. Technol., 2006, 55, (5), pp. 16481656 (doi: 10.1109/TVT.2006.878606).
    12. 12)
      • 12. Anouar, H., Bonnet, C.: ‘Optimal constant-window backoff scheme for IEEE 802.11 DCF in single-hop wireless networks under finite load conditions’, Wirel. Pers. Commun., 2007, 43, pp. 15831602 (doi: 10.1007/s11277-007-9329-5).
    13. 13)
      • 13. Deng, D.-J., Chen, H.-C., Chao, H.-C., Huang, Y.-M.: ‘A collision alleviation scheme for IEEE 802.11p VANETs’, Wirel. Pers. Commun., 2011, 56, pp. 371383 (doi: 10.1007/s11277-010-9977-8).
    14. 14)
      • 14. Daneshgaran, F., Laddomada, M., Mesiti, F., Mondin, M.: ‘Unsaturated throughput analysis of IEEE 802.11 in presence of non-ideal transmission channel and capture effects’, IEEE Trans. Wirel. Commun., 2008, 7, (4), pp. 12761286 (doi: 10.1109/TWC.2008.060859).
    15. 15)
      • 15. Haitao, Z., Xiaomin, Z., Gaoming, C.: ‘Performance analysis of IEEE802.11 DCF in non-saturated conditions’. Int. Conf. on Business Management and Electronic Information (BMEI), May 2011, vol. 4, pp. 495498.
    16. 16)
      • 16. Yang, J.W., Kwon, J.K., Hwang, H.Y., Sung, D.K.: ‘Goodput analysis of a WLAN with hidden nodes under a non-saturated condition’, IEEE Trans. Wirel. Commun., 2009, 8, (5), pp. 22592264 (doi: 10.1109/TWC.2009.080632).
    17. 17)
      • 17. Hung, F.-Y., Marsic, I.: ‘Analysis of non-saturation and saturation performance of IEEE 802.11 DCF in the presence of hidden stations’. 66th IEEE Conf. Vehicular Technology, October 2007, pp. 230234.
    18. 18)
      • 18. Malone, D., Duffy, K., Leith, D.J.: ‘Modeling the 802.11 distributed coordination function in non-saturated heterogeneous conditions’, IEEE ACM Trans. Netw., 2007, 15, (1), pp. 159172 (doi: 10.1109/TNET.2006.890136).
    19. 19)
      • 19. Mahasukhon, P., Hempel, M., Sharif, H., Zhou, T., Ci, S., Chen, H.-H.: ‘BER analysis of 802.11b networks under mobility’. IEEE Int. Conf. on Communications, ICC ’07, June 2007, pp. 47224727.
    20. 20)
      • 20. Zhao, H., Wei, J., Wang, S., Xi, Y.: ‘Available bandwidth estimation and prediction in ad hoc networks’. Mobile Ad-Hoc Networks: Protocol Design, National University of Defense Technology, January 2011, China, pp. 6184.

Related content

This is a required field
Please enter a valid email address