access icon free Caching efficiency of information-centric networking

In-network caching leveraged in information-centric networking (ICN) is one key difference between ICN and the current Internet. Taken into account the complexity and practicality of technology, cooperatively in-network caching is yet so far. However, caching efficiency of current uncooperative caching scheme is disappointing. Network coding is considered as the most promising information theoretic approach to improve performance in current Internet. The authors’ previous work has proposed information-centric networking built network coding (ICN-NC). In this study, the authors will prove that ICN-NC can also improve caching efficiency besides network performance. First, a theoretical model is proposed to evaluate caching efficiency of ICN and ICN-NC, and compare the caching efficiency between ICN and ICN-NC both analytically and by simulations. Then effect of different parameters on caching efficiency, such as file size, copy size and probability of replacement etc., are also extensively researched. Furthermore, the authors formulate the overall caching efficiency as a multi-objective optimisation problem with constraints, and then Pareto optimal set to achieve an optimal allocation of network-wide caching is obtained.

Inspec keywords: set theory; Pareto optimisation; Internet; cache storage; network coding

Other keywords: in-network caching; multiobjective optimisation problem; copy size; information-centric networking; Pareto optimal set; ICN; technology practicality; technology complexity; replacement probability; network coding; file size; Internet; caching efficiency improvement; uncooperative caching scheme; ICN-NC

Subjects: Semiconductor storage; Other computer networks; Computer communications; Memory circuits; Codes; Combinatorial mathematics; Combinatorial mathematics; Optimisation techniques; Optimisation techniques

References

    1. 1)
      • 15. Dimakis, A.G., Ramchandran, K., Wu, Y., et al: ‘A survey on network codes for distributed storage’, Proc. IEEE, 2011, 99, (3), pp. 476489 (doi: 10.1109/JPROC.2010.2096170).
    2. 2)
      • 9. Ahlswede, R., Cai, N., Li, S.Y.R., et al: ‘Network information flow’, IEEE Trans. Inf. Theory, 2000, 46, (4), pp. 12041216 (doi: 10.1109/18.850663).
    3. 3)
      • 23. Huang, L.F., Gao, Z.L., Guo, D, et al: ‘A sensing policy based on the statistical property of licensed channel in cognitive network’, Int. J. Internet Protocol Technol., 2010, 5, (4), pp. 219229 (doi: 10.1504/IJIPT.2010.039233).
    4. 4)
      • 27. Psaras, I., Clegg, R., Landa, R., et al: ‘Modelling and evaluation of CCN-caching trees’. NETWORKING 2011, 2011, pp. 7891.
    5. 5)
      • 29. Calvert, K.I., Doar, M.B., Zegura, E.W.: ‘Modeling internet topology’, IEEE Commun. Mag., 1997, 35, (6), pp. 160163 (doi: 10.1109/35.587723).
    6. 6)
      • 1. Named Data Networking, http://www.named-data.net.
    7. 7)
      • 28. Rossi, D., Rossini, G.: ‘Caching performance of content centric networks under multi-path routing (and more)’. Technical Report, 2011.
    8. 8)
      • 14. Wu, Y.: ‘Existence and construction of capacity-achieving network codes for distributed storage’, IEEE J. Sel. Areas Commun., 2010, 28, (2), pp. 277288 (doi: 10.1109/JSAC.2010.100217).
    9. 9)
      • 21. Xie, F., Feng, G., Yang, X.: ‘Optimizing caching policy for loss recovery in reliable multicast’. IEEE INFOCOM 2006, 2006, pp. 112.
    10. 10)
      • 17. Pereira, Z.C., Pellenz, M.E., Souza, R.D., et al: ‘Unequal error protection for LZSS compressed data using Reed-Solomon codes’, IET Commun., 2007, 1, (4), pp. 612617 (doi: 10.1049/iet-com:20060530).
    11. 11)
      • 4. Liu, W., Yu, S.: ‘Information-centric networking with built-in network coding’. ELSEVIER Computer Communications (submitted), 2012.
    12. 12)
      • 32. Coello, C.A.C., Lamont, G.B., Van Veldhuizen, D.A.: ‘Evolutionary algorithms for solving multi-objective problems’ (Springer-Verlag, New York2007).
    13. 13)
      • 3. Ghodsi, A., Shenker, S., Koponen, T., et al: ‘Information-centric networking: seeing the forest for the trees[C]’. HotNets-X Proceedings of the Tenth ACM Workshop on Hot Topics in Networks, 2011, p. 1.
    14. 14)
      • 30. Breslau, L., Cao, P., Fan, L., et al: ‘Web caching and Zipf-like distributions: evidence and implications’. IEEE INFOCOM.IEEE, 1999, pp. 126134.
    15. 15)
      • 33. Deb, K.: ‘Multi-objective optimization using evolutionary algorithms’ (Wiley, 2001).
    16. 16)
      • 20. Zheng, B., Xu, J., Lee, D.L.: ‘Cache invalidation and replacement strategies for location-dependent data in mobile environments’, IEEE Trans. Comput., 2002, 51, (10), pp. 11411153 (doi: 10.1109/TC.2002.1039841).
    17. 17)
      • 26. Carofiglio, G., Gehlen, V., Perino, D.: ‘Experimental evaluation of memory management in content-centric networking’. IEEE ICC.IEEE, 2011, pp. 16.
    18. 18)
      • 8. Chou, P.A., Wu, Y., Jain, K.: ‘Practical network coding[C]’. 41st Annu. Allerton Conf. Communication, Control and Computing, Monticello, IL, 2003.
    19. 19)
      • 24. Lai, C.F., Chang, S.Y., Chao, H.C., et al: ‘Detection of cognitive injured body region using multiple triaxial accelerometers for elderly falling’, IEEE Sens. J., 2011, 11, (3), pp. 763770 (doi: 10.1109/JSEN.2010.2062501).
    20. 20)
      • 15. Dimakis, A.G., Ramchandran, K., Wu, Y., et al: ‘A survey on network codes for distributed storage’, Proc. IEEE, 2011, 99, (3), pp. 476489 (doi: 10.1109/JPROC.2010.2096170).
    21. 21)
      • 2. Jacobson, V., Smetters, D.K., Thornton, J. D., et al: ‘Networking named content’. In: CoNEXT ’09, ACM, 2009, pp. 112.
    22. 22)
      • 5. Liu, W., Yu, S.: ‘APDR: a scheme for cooperative caching in information-centric networking’. J. of Software(accepted), 2013.
    23. 23)
      • 25. Rosensweig, E.J., Kurose, J., Towsley, D.: ‘Approximate models for general cache networks’. IEEE INFOCOM.IEEE, 2010, pp. 19.
    24. 24)
      • 16. Reed, I.S., Solomon, G.: ‘Polynomial codes over certain finite fields’, J. Soc. Ind. Appl. Math., 1960, 8, (2), pp. 300304 (doi: 10.1137/0108018).
    25. 25)
      • 11. Acedanski, S., Deb, S., Médard, M., et al: ‘How good is random linear coding based distributed networked storage’. WINMEE, RAWNET and NETCOD 2005 Workshops, 2005.
    26. 26)
      • 31. Sawaragi, Y., Nakayama, H., Tanino, T.: ‘Theory of multiobjective optimization’ (Elsevier Science, 1985).
    27. 27)
      • 6. Publish-Subscribe Internet Routing Paradigm, http://www.psirp.org.
    28. 28)
      • 12. Lin, Y., Liang, B., Li, B.: ‘Priority random linear codes in distributed storage systems’, IEEE Trans. Parallel Distrib. Syst., 2009, 20, (11), pp. 16531667 (doi: 10.1109/TPDS.2008.251).
    29. 29)
      • 10. Li, S.Y.R., Yeung, R.W., Cai, N.: ‘Linear network coding’, IEEE Trans. Inf. Theory, 2003, 49, (2), pp. 371381 (doi: 10.1109/TIT.2002.807285).
    30. 30)
      • 19. Huang, C., Xu, L.STAR: ‘An efficient coding scheme for correcting triple storage node failures’, IEEE Trans. Comput., 2008, 57, (7), pp. 889901 (doi: 10.1109/TC.2007.70830).
    31. 31)
      • 9. Ahlswede, R., Cai, N., Li, S.Y.R., et al: ‘Network information flow’, IEEE Trans. Inf. Theory, 2000, 46, (4), pp. 12041216 (doi: 10.1109/18.850663).
    32. 32)
      • 13. Dimakis, A.G., Godfrey, P.B., Wu, Y., et al: ‘Network coding for distributed storage systems’, IEEE Trans. Inf. Theory, 2010, 56, (9), pp. 45394551 (doi: 10.1109/TIT.2010.2054295).
    33. 33)
      • 22. Li, C.S., Tseng, Y.C., Chao, H.C.: ‘A neighbor caching mechanism for handoff in IEEE 802.11 wireless networks’. Multimedia and Ubiquitous Engineering, 2007, MUE'07. Int. Conf. IEEE, 2007, pp. 4853.
    34. 34)
      • 7. Koponen, T., Chawla, M., Chun, B.G., et al: ‘A data-oriented (and beyond) network architecture’. SIGCOMM '07.ACM, 2007, pp. 181192.
    35. 35)
      • 18. Blaum, M., Brady, J., Bruck, J., et al: ‘EVENODD: an efficient scheme for tolerating double disk failures in RAID architectures’, IEEE Trans. Comput., 1995, 44, (2), pp. 192202 (doi: 10.1109/12.364531).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-net.2012.0177
Loading

Related content

content/journals/10.1049/iet-net.2012.0177
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading