access icon free Mitigating shadowing effects through cluster-head cooperation techniques

In many situations the performance of wireless communication systems decreases especially when they operate over multipath fading channels subject also to shadowing. In this sense, cluster-based networks have been introduced as an efficient solution, offering coverage extension and energy saving. In this study, the authors investigate new cluster-head (CH) selection algorithms, where the nodes can select different CHs, according to the corresponding signal strength. In addition, it is shown that if CHs are equipped with multiple antennas, the negative consequences of fading/shadowing can be further reduced. The performance of this scheme is theoretically investigated over correlated Nakagami-m fading channels, which are also subject to shadow fading, modelled by gamma distribution. The derived statistical metrics are used to obtain numerical evaluated results for the outage and the average bit error probabilities. These results are complemented by computer simulated ones, which validate the accuracy of the proposed analysis.

Inspec keywords: radio networks; statistical analysis

Other keywords: CH selection algorithms; shadowing effects; multipath fading channels; Nakagami-m fading channels; statistical metrics; wireless communication systems; average bit error probabilities; cluster based networks; cluster head cooperation techniques

Subjects: Radio links and equipment; Other topics in statistics

References

    1. 1)
      • 38. Goel, S., Abawajy, J.H., Kim, T.H.: ‘Performance analysis of receive diversity in wireless sensor networks over GBSBE models’, Sensors, 2010, 10, (12), pp. 1102111037 (doi: 10.3390/s101211021).
    2. 2)
      • 3. Chatterjeo, M., Das, S.K., Turgut, D.: ‘WCA: a weighted clustering algorithm for mobile ad-hoc networks’, Cluster Comput., 2002, 5, (2), pp. 193204 (doi: 10.1023/A:1013941929408).
    3. 3)
      • 27. Wang, H., Ma, S., Ng, T.S.: ‘On performance of cooperative communication systems with spatial random relays’, IEEE Trans. Commun., 2011, 59, (4), pp. 11901199 (doi: 10.1109/TCOMM.2011.012711.090285A).
    4. 4)
      • 18. Bithas, P.S., Sagias, N.C., Mallik, R.K.: ‘On the sum of Kappa stochastic variates and applications to equal-gain combining’, IEEE Trans. Commun., 2011, 59, (9), pp. 24342442 (doi: 10.1109/TCOMM.2011.071111.090758).
    5. 5)
      • 13. Cosşkun, A.F., Kucur, O.: ‘Performance of maximal-ratio transmission with receive antenna selection in Nakagami-m fading channels’. IEEE 21st Int. Symp. Personal Indoor and Mobile Radio Communications (PIMRC), 2010, pp. 971975.
    6. 6)
      • 26. Dong, C., Yang, L.L., Hanzo, L.: ‘Multihop diversity for fading mitigation in multihop wireless networks’. 2011 IEEE, Vehicular Technology Conf. (VTC Fall), 2011.
    7. 7)
      • 1. Kortuem, G., Kawsar, F., Sundramoorthy, V., Fitton, D.: ‘Smart objects as building blocks for the internet of things’, IEEE Internet Comput., 2010, 14, (1), pp. 4451 (doi: 10.1109/MIC.2009.143).
    8. 8)
      • 34. Rosa, C., Villa, D.L., Castellanos, C.U., et al: ‘Performance of fast AMC in E-UTRAN Uplink’. ICC’08, 2008 IEEE Int. Conf. Communications, 2008.
    9. 9)
      • 14. Renzo, M., Graziosi, F., Santucci, F.: ‘A unified framework for performance analysis of CSI-assisted cooperative communications over fading channels’, IEEE Trans. Commun., 2009, 57, (9), pp. 25512557 (doi: 10.1109/TCOMM.2009.09.070653).
    10. 10)
      • 8. Shi, C., Zhao, H., Garcia-Palacios, E., Ma, D., Wei, J.: ‘Distributed interference-aware relay selection for IEEE 802.11 based cooperative networks’, IET Netw., 2012, 1, (2), pp. 8490 (doi: 10.1049/iet-net.2011.0022).
    11. 11)
      • 21. Gradshteyn, I.S., Ryzhik, I.M.: ‘Table of integrals, series, and products’ (Academic Press, New York, 2000, 6th edn.).
    12. 12)
      • 25. Papoulis, A.: ‘Probability, random variables, and stochastic processes’ (McGraw-Hill, New York, 1984, 2nd edn.).
    13. 13)
      • 11. Hashmi, S.U., Rahman, S.M.M., Mouftah, H.T., Georganas, N.D.: ‘Reliability model for extending cluster lifetime using backup cluster heads in cluster-based wireless sensor networks’. IEEE Int. Conf. Wireless and Mobile Computing, Networking and Communications, 2010, pp. 479485.
    14. 14)
      • 37. Goel, S., Abawajy, l.H.: ‘Performance of smart antennas with receive diversity in wireless sensor networks’. IEEE-lnt. Conf. Signal Processing, Communications and Networking, 2008.
    15. 15)
      • 24. Bithas, P.S., Sagias, N.C., Mathiopoulos, P.T., Karagiannidis, G.K., Rontogiannis, A.A.: ‘On the performance analysis of digital communications over generalized-K fading channels’, IEEE Commun. Lett., 2006, 5, (10), pp. 353355 (doi: 10.1109/LCOMM.2006.1633320).
    16. 16)
      • 29. Kotz, S., Adams, J.: ‘Distribution of sum of identically distributed exponentially correlated gamma variables’, Ann. Math. Stat., 1964, 35, pp. 227283.
    17. 17)
      • 23. Abdi, A., Barger, H.A., Kaveh, M.: ‘A simple alternative to the lognormal model of shadow fading in terrestrial and satellite channels’. IEEE Vehicular Technology Conf., Atlantic City, 2001, pp. 20582062.
    18. 18)
      • 7. Guo, M.H., Liaw, H.T., Deng, D.J., Chao, H.C.: ‘Cluster-based secure communication mechanism in wireless ad hoc networks’, IETInf. Secur., 2010, 4, (4), pp. 352360 (doi: 10.1049/iet-ifs.2009.0120).
    19. 19)
      • 32. Abu-Dayya, A.A., Beaulieu, N.C.: ‘Analysis of switched diversity systems on generalized-fading channels’, IEEE Trans. Commun., 1994, 42, (11), pp. 29592964 (doi: 10.1109/26.328977).
    20. 20)
      • 20. Gagliardi, R.M.: ‘Introduction to communications engineering’ (Wiley, New York, 2005, 2nd edn.).
    21. 21)
      • 6. Sadek, A.K., Yu, W., Liu, K.J.R.: ‘On the energy efficiency of cooperative communications in wireless sensor networks’, ACM Trans. Sensor Netw., 2009, 6, (1), pp. 5:15:21 (doi: 10.1145/1653760.1653765).
    22. 22)
      • 30. The Wolfram Functions Site. Available at: http://www.functions.wolfram.com, 2012.
    23. 23)
      • 15. Al-Ahmadi, S., Yanikomeroglu, H.: ‘On the approximation of the generalized-K distribution by a gamma distribution for modeling composite fading channels’, IEEE Trans. Wirel. Commun., 2010, 9, (2), pp. 706713 (doi: 10.1109/TWC.2010.02.081266).
    24. 24)
      • 2. Vermesan, O., Harrison, M., Vogt, H., Kalaboukas, K., Tomasella, M., et al: (Eds.): ‘The Internet of Things – Strategic Research Roadmap2009.
    25. 25)
      • 3. Chatterjeo, M., Das, S.K., Turgut, D.: ‘WCA: a weighted clustering algorithm for mobile ad-hoc networks’, Cluster Comput., 2002, 5, (2), pp. 193204 (doi: 10.1023/A:1013941929408).
    26. 26)
      • 33. Calabrese, F.D., Rosa, C., Anas, M., Michaelsen, P.H., Pedersen, K.I., Mogensen, P.E.: ‘Adaptive transmission bandwidth based packet scheduling for LTE uplink’. IEEE 68th, Vehicular Technology Conf., 2008’, VTC 2008-Fall’, 2008.
    27. 27)
      • 28. Yu, H., Stüber, G.L.: ‘Outage probability for cooperative diversity with selective combining in cellular networks’, Wirel. Commun. Mobile Comput., 2010, 10, (12), pp. 15631575 (doi: 10.1002/wcm.1060).
    28. 28)
      • 17. Atapattu, S., Tellambura, C., Jiang, H.: ‘Performance of an energy detector over channels with both multipath fading and shadowing’, IEEE Trans. Wirel. Commun., 2010, 9, (12), pp. 36623670 (doi: 10.1109/TWC.2010.100110.091042).
    29. 29)
      • 10. Younis, O., Fahmy, S., Santi, P.: ‘An architecture for robust sensor network communications’, Int. J. Distrib. Sensor Netw., 2005, 1, (3), pp. 4305327.
    30. 30)
      • 16. Zhu, C., Mietzner, J., Schober, R.: ‘On the performance of non-coherent transmission schemes with equal-gain combining in generalized K-fading’, IEEE Trans. Wirel. Commun., 2010, 9, (4), pp. 13371349 (doi: 10.1109/TWC.2010.04.090172).
    31. 31)
      • 12. Simon, M.K., Alouini, M.S.: ‘Digital communication over fading channels’ (Wiley, New York, 2005, 2nd edn.).
    32. 32)
      • 22. Abdi, A., Kaveh, M.: ‘On the utility of the gamma PDF in modeling shadow fading (slow fading)’, IEEE Veh. Technol. Conf., 1999, 3, pp. 23082312.
    33. 33)
      • 5. Dasgupta, K., Kalpakis, K., Namjoshi, P.: ‘An efficient clustering-based heuristic for data gathering and aggregation in sensor networks’. IEEE Wireless Communications and Networking Conf. (WCNC), 2003.
    34. 34)
      • 19. Bissias, N., Efthymoglou, G.P., Aalo, V.A.: ‘Performance analysis of dual-hop relay systems with single relay selection in composite fading channels’, AEU – Int. J. Electron. Commun., 2012, 66, (1), pp. 3944 (doi: 10.1016/j.aeue.2011.04.013).
    35. 35)
      • 9. Younis O., Fahmy S., Santi P.: ‘Robust communications for sensor networks in hostile environments’, Intern., Works on QoS, 2004.
    36. 36)
      • 31. Adamchik, V.S., Marichev, O.I.: ‘The algorithm for calculating integrals of hypergeometric type functions and its realization in REDUCE system’. Int. Conf. Symbolic and Algebraic Computation’, Tokyo, 1990, pp. 212224.
    37. 37)
      • 36. Hasna, M.O., Alouini, M.S.: ‘End-to-end performance of transmission systems with relays over rayleigh-fading channels’, IEEE Trans. Wirel. Commun., 2003, 2, (6), pp. 11261131 (doi: 10.1109/TWC.2003.819030).
    38. 38)
      • 4. Heinzelman, W., Chandrakasan, A., Balakrishnan, H.: ‘An application-specific protocol architecture for wireless microsensor networks’, IEEE Trans Wirel. Commun., 2002, 1, (4), pp. 660670 (doi: 10.1109/TWC.2002.804190).
    39. 39)
      • 38. Goel, S., Abawajy, J.H., Kim, T.H.: ‘Performance analysis of receive diversity in wireless sensor networks over GBSBE models’, Sensors, 2010, 10, (12), pp. 1102111037 (doi: 10.3390/s101211021).
    40. 40)
      • 35. Ko, Y.C., Alouini, M.S., Simon, M.K.: ‘Analysis and optimization of switched diversity systems’, IEEE Trans. Veh. Technol., 2000, 49, (5), pp. 18131831 (doi: 10.1109/25.892586).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-net.2012.0136
Loading

Related content

content/journals/10.1049/iet-net.2012.0136
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading