http://iet.metastore.ingenta.com
1887

Modelling and analysing medium access delay for differentiated services in IEEE 802.11s wireless mesh networks

Modelling and analysing medium access delay for differentiated services in IEEE 802.11s wireless mesh networks

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Networks — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Wireless mesh networks (WMNs) has been actively explored for a few years, and the IEEE 802.11 Task Group “s” has recently approved the active 802.11s standard for Wireless local area network (WLAN) mesh networking. To provide differentiated channel access and quality of service (QoS) guarantees for multimedia flows, IEEE 802.11s standard employs enhanced distributed channel access (EDCA) as the basic medium access control (MAC) protocol. In this study, the authors focus on modelling and analysing the medium access delay differentiation of EDCA under saturation condition in multi-hop WMNs. The authors develop a three-dimensional Markov chain model to evaluate the medium access delay differentiation of EDCA. In this model, the authors fully consider the performance impact of Request to Send (RTS) frame collisions and data frame collisions and then put forward the pseudo states to distinguish the different back-off procedures induced by these collisions. Using this analytical model, the authors derive the average medium access delay for the flows with different priorities. Comparisons with the simulation results show that the analytical model is extremely accurate.

References

    1. 1)
      • I.F. Akyildiz , X. Wang . A survey on wireless mesh networks. IEEE Commun. Mag. , 9 , S23 - S30
    2. 2)
      • R.C. Carrano , L.C.S. Magalhães , D.C.M. Saade , C.V.N. Albuquerque . IEEE 802.11s multi-hop MAC: a tutorial. IEEE Commun. Surv. Tutor. , 1 , 52 - 67
    3. 3)
      • G.R. Hiertz , Y. Zang , S. Max , T. Junge , E. Weiss , B. Wolz . IEEE 802.11s: WLAN mesh standardization and high performance extensions. IEEE Netw. , 3 , 12 - 19
    4. 4)
      • Y.L. Tang , T.Y. Wu , J.W. Ding , J.J. Chen . Resource sharing and bandwidth allocation for WiMAX mesh networks using centralized scheduling. J. Internet Technol. , 2 , 251 - 259
    5. 5)
      • C.-Y. Chang , Y.-P. Wang , H.-C. Chao . An efficient mesh-based core multi-cast routing protocol on MANETs. J. Internet Technol. , 2 , 229 - 239
    6. 6)
      • Y. Li , L. Zhou , Y. Yang , H.-C. Chao . Optimization architecture for joint multi-path routing and scheduling in wireless mesh networks. Math. Comput. Model. , 458 - 470
    7. 7)
      • IEEE 802 LAN/MAN Standards Committee: ‘Wireless LAN medium access control (MAC) and physical layer (PHY) specifications’. 1999.
    8. 8)
      • Mangold, S., Choi, S., May, P., Klein, O., Hiertz, G., Stibor, L.: `IEEE 802.11e wireless LAN for quality of service', Proc. European Wireless, February 2002, Florence, Italy, p. 32–39.
    9. 9)
      • S. Mangold , S. Choi , G.R. Hiertz , O. Klein , B. Walke . Analysis of IEEE 802.11e for QoS support in wireless LANs. IEEE Wirel. Commun. , 6 , 40 - 50
    10. 10)
      • C.L. Huang , W.J. Liao . Throughput and delay performance of IEEE 802.11e enhanced distributed channel access (EDCA) under saturation condition. IEEE Trans. Wirel. Commun. , 1 , 136 - 145
    11. 11)
      • Y. Xiao . Performance analysis of priority schemes for IEEE 802.11 and IEEE 802.11e wireless LANs. IEEE Trans. Wirel. Commun. , 4 , 1506 - 1515
    12. 12)
      • Engelstad, P.E., Østerbø, O.N.: `Queueing delay analysis of IEEE 802.11e EDCA', Proc. WONS, January 2006, Les Menuires, France, p. 18–20.
    13. 13)
      • H. Zhu , I. Chlamtac . Performance analysis for IEEE 802.11e EDCF service differentiation. IEEE Trans. Wirel. Commun. , 4 , 1779 - 1788
    14. 14)
      • W. Dapeng , Z. Yan , W. Muqing , Z. Xiaojing . Medium access control access delay analysis of IEEE 802.11e wireless LAN. IET Commun. , 6 , 1061 - 1070
    15. 15)
      • Z. Tao , S. Panwar . Throughput and delay analysis for the IEEE 802.11e enhanced distributed channel access. IEEE Trans. Commun. , 4 , 596 - 603
    16. 16)
      • G. Bianchi . Performance analysis of the IEEE 802.11 distributed coordination function. IEEE J. Sel. Areas Commun. , 3 , 535 - 547
    17. 17)
      • D. Vassis , K. Ntzas . Delay performance analysis and evaluation of IEEE 802.11e EDCA in finite load conditions. Wirel. Pers. Commun. , 29 - 43
    18. 18)
      • D. Xu , T. Sakurai , H.L. Vu . An access delay model for IEEE 802.11e EDCA. IEEE Trans. Mob. Comput. , 2 , 261 - 275
    19. 19)
      • J. Hui , M. Devetsikiotis . A unified model for the performance analysis of IEEE 802.11e EDCA. IEEE Trans. Commun. , 9 , 1498 - 1510
    20. 20)
      • H. Zhai , Y. Kwon , Y. Fang . Performance analysis of IEEE 802.11 MAC protocols in wireless LANs. Wirel. Commun. Mob. Comput. , 917 - 931
    21. 21)
      • M. Ozdemir , A.B. Mcdonald . On the performance of ad hoc wireless LANs: a practical queuing theoretic model. Perform. Eval. , 11 , 1127 - 1156
    22. 22)
      • E. Ghadimi , A. Khonsari , A. Diyanat , M. Frarmani , N. Yazdani . An analytical model of delay in multi-hop wireless ad hoc networks. Wirel. Netw. , 7 , 1679 - 1697
    23. 23)
      • Y. Tay , K. Chua . A capacity analysis for the IEEE 802.11 MAC protocol. Wirel. Netw. , 159 - 171
    24. 24)
      • T. Sakurai , H.L. Vu . MAC access delay of IEEE 802.11 DCF. IEEE Trans. Wirel. Commun. , 5 , 1702 - 1710
    25. 25)
      • Xu, K., Gerla, M., Bae, S.: `How effective is the IEEE 802.11RTS/CTS handshake in ad hoc networks', Proc. IEEE GLOBECOM Conf., November 2002, 1, p. 72–76.
    26. 26)
      • Scalable Network Technologies: ‘QualNet 4.5 programmer's guide’, March 2008.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-net.2012.0010
Loading

Related content

content/journals/10.1049/iet-net.2012.0010
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address