access icon openaccess Structure design boosts concomitant enhancement of permittivity, breakdown strength, discharged energy density and efficiency in all-organic dielectrics

Polymer-based nanocomposites with excellent flexibility and intrinsic high breakdown strength are promising candidates for high energy density capacitors compared to ceramics counterparts. However, their energy density is relatively low due to the trade-off between permittivity and breakdown strength. In this work, the authors proposed a ferroconcrete-like structure for all-organic nanocomposites via combinatorial electrospinning and hot-pressing method. In this structure, polymethyl methacrylate (PMMA) serves as matrix while poly(vinylidene fluoride-co-hexafluoropropylene) (P(VDF-HFP)) serves as reinforcement phase. This novel structure is highly effective in breaking the paradox of improved discharged energy density with decreased efficiency, as evidenced by the concurrently improved discharged energy density (∼12.15 J/cm3 compared to 8.82 J/cm3 of the matrix) and efficiency (∼81.7% compared to 76.8% of the matrix). Compared to conventional blending composite films, samples with ferroconcrete-like structure exhibit higher permittivity, breakdown strength, discharged energy density and efficiency. The superior energy storage performance is attributed to large aspect ratio P(VDF-HFP) fibres distributed perpendicularly to the external field, which brings about the extra enhancement of permittivity. Besides, mechanical properties are improved and restriction on carrier motion is facilitated, leading to enhanced breakdown strength and suppressed conduction. This work provides a new way to design dielectric composite for high energy density and efficiency applications.

Inspec keywords: polymer fibres; permittivity; electric breakdown; filled polymers; polymer blends; nanofabrication; nanocomposites; hot pressing; electrospinning; electrical conductivity

Other keywords: polymethyl methacrylate; hot-pressing method; poly(vinylidene fluoride-co-hexafluoropropylene); high energy density capacitors; intrinsic high breakdown strength; all-organic nanocomposites; reinforcement phase; carrier motion; ferroconcrete-like structure; polymer-based nanocomposites; dielectric composite; all-organic dielectrics; permittivity; external field; large aspect ratio P(VDF-HFP) fibres; combinatorial electrospinning; mechanical properties; efficiency applications; discharged energy density; electrical conduction; enhanced breakdown strength; energy storage performance

Subjects: Preparation of reinforced polymers and polymer-based composites; Other methods of nanofabrication; Low-dimensional structures: growth, structure and nonelectronic properties; Electrical properties of composite materials (thin films, low-dimensional and nanoscale structures); Powder techniques, compaction and sintering; Dielectric permittivity; Dielectric breakdown and space-charge effects; Structure of solid clusters, nanoparticles, nanotubes and nanostructured materials

References

    1. 1)
      • 14. Pan, Z.B., Wang, M.K., Chen, J.W., et al: ‘Largely enhanced energy storage capability of a polymer nanocomposite utilizing a core-satellite strategy’, Nanoscale, 2018, 10, (35), pp. 1662116629.
    2. 2)
      • 51. Chiu, F.-C.: ‘A review on conduction mechanisms in dielectric films’, Adv. Mater. Sci. Eng., 2014, 2014, pp. 118.
    3. 3)
      • 45. Tang, H., Zhou, Z., Sodano, H.A.: ‘Relationship between BaTiO(3) nanowire aspect ratio and the dielectric permittivity of nanocomposites’, ACS Appl. Mater. Interfaces, 2014, 6, (8), pp. 54505455.
    4. 4)
      • 18. Song, Y., Shen, Y., Hu, P., et al: ‘Significant enhancement in energy density of polymer composites induced by dopamine-modified Ba0.6Sr0.4TiO3 nanofibers’, Appl. Phys. Lett., 2012, 101, (15), p. 152904.
    5. 5)
      • 13. Da Silva, A.B., Arjmand, M., Sundararaj, U., et al: ‘Novel composites of copper nanowire/PVDF with superior dielectric properties’, Polymer, 2014, 55, (1), pp. 226234.
    6. 6)
      • 22. Tang, H., Zhou, Z., Bowland, C.C., et al: ‘Synthesis of calcium copper titanate (CaCu 3 Ti 4 O 12) nanowires with insulating Sio 2 barrier for low loss high dielectric constant nanocomposites’, Nano Energy, 2015, 17, pp. 302307.
    7. 7)
      • 4. Prateek Thakur, V.K., Gupta, R.K.: ‘Recent progress on ferroelectric polymer-based nanocomposites for high energy density capacitors: synthesis, dielectric properties, and future aspects’, Chem. Rev., 2016, 116, (7), pp. 42604317.
    8. 8)
      • 8. Whittingham, M.S.: ‘Materials challenges facing electrical energy storage’, MRS Bull., 2008, 33, (4), pp. 411419.
    9. 9)
      • 37. Tseng, J.-K., Tang, S., Zhou, Z., et al: ‘Interfacial polarization and layer thickness effect on electrical insulation in multilayered polysulfone/poly(vinylidene fluoride) films’, Polymer, 2014, 55, (1), pp. 814.
    10. 10)
      • 48. Stark, K., Garton, C.: ‘Electric strength of irradiated polythene’, Nature, 1955, 176, (4495), p. 1225.
    11. 11)
      • 1. Dang, Z.M., Yuan, J.K., Yao, S.H., et al: ‘Flexible nanodielectric materials with high permittivity for power energy storage’, Adv. Mater., 2013, 25, (44), pp. 63346365.
    12. 12)
      • 16. Dang, Z.M., Wang, L., Yin, Y., et al: ‘Giant dielectric permittivities in functionalized carbon-nanotube/ electroactive-polymer nanocomposites’, Adv. Mater., 2007, 19, (6), pp. 852857.
    13. 13)
      • 11. Dang, Z.-M., Yuan, J.-K., Zha, J.-W., et al: ‘Fundamentals, processes and applications of high-permittivity polymer–matrix composites’, Prog. Mater. Sci., 2012, 57, (4), pp. 660723.
    14. 14)
      • 31. Hu, P., Shen, Y., Guan, Y., et al: ‘Topological-structure modulated polymer nanocomposites exhibiting highly enhanced dielectric strength and energy density’, Adv. Funct. Mater., 2014, 24, (21), pp. 31723178.
    15. 15)
      • 40. Jiang, J., Shen, Z., Cai, X., et al: ‘Polymer nanocomposites with interpenetrating gradient structure exhibiting ultrahigh discharge efficiency and energy density’, Adv. Energy Mater., 2019, 9, (15), p. 1803411.
    16. 16)
      • 49. Erb, R.M., Libanori, R., Rothfuchs, N., et al: ‘Composites reinforced in three dimensions by using low magnetic fields’, Science, 2012, 335, pp. 199204.
    17. 17)
      • 42. Dan, Z., Jiang, J., Qian, J., et al: ‘A ferroconcrete-like all-organic nanocomposite exhibiting improved mechanical property, high breakdown strength, and high energy efficiency’, Macromol. Mater. Eng., 2019, 304, (12), p. 1900433.
    18. 18)
      • 20. Yu, K., Niu, Y., Zhou, Y., et al: ‘Nanocomposites of surface-modified BaTiO3 nanoparticles filled ferroelectric polymer with enhanced energy density’, J. Am. Ceram. Soc., 2013, 96, (8), pp. 25192524.
    19. 19)
      • 3. Shen, Y., Lin, Y., Zhang, Q.M.: ‘Polymer nanocomposites with high energy storage densities’, MRS Bull., 2015, 40, (9), pp. 753759.
    20. 20)
      • 17. Kim, P., Jones, S.C., Hotchkiss, P.J., et al: ‘Phosphonic acid-modified barium titanate polymer nanocomposites with high permittivity and dielectric strength’, Adv. Mater., 2007, 19, (7), pp. 10011005.
    21. 21)
      • 36. Zhou, Z., Carr, J., Mackey, M., et al: ‘Interphase/interface modification on the dielectric properties of polycarbonate/poly(vinylidene fluoride-co-hexafluoropropylene) multilayer films for high-energy density capacitors’, J. Polym. Sci., Part B, Polym. Phys., 2013, 51, (12), pp. 978991.
    22. 22)
      • 25. Wang, L., Huang, X., Zhu, Y., et al: ‘Enhancing electrical energy storage capability of dielectric polymer nanocomposites via the room temperature Coulomb blockade effect of ultra-small platinum nanoparticles’, Phys. Chem. Chem. Phys., 2018, 20, (7), pp. 50015011.
    23. 23)
      • 23. Zhang, X., Shen, Y., Xu, B., et al: ‘Giant energy density and improved discharge efficiency of solution-processed polymer nanocomposites for dielectric energy storage’, Adv. Mater., 2016, 28, (10), pp. 20552061.
    24. 24)
      • 7. Huang, X., Sun, B., Zhu, Y., et al: ‘High-k polymer nanocomposites with 1D filler for dielectric and energy storage applications’, Prog. Mater. Sci., 2019, 100, pp. 187225.
    25. 25)
      • 46. Dissado, L.A., Fothergill, J.C.: ‘Electrical degradation and breakdown in polymers’ (The Institution of Engineering and Technology, London, United Kindom, 1992).
    26. 26)
      • 34. Shen, Y., Hu, Y., Chen, W., et al: ‘Modulation of topological structure induces ultrahigh energy density of graphene/Ba 0.6 Sr 0.4 TiO3 nanofiber/polymer nanocomposites’, Nano Energy, 2015, 18, pp. 176186.
    27. 27)
      • 29. Zhou, T., Zha, J.-W., Cui, R.-Y., et al: ‘Improving dielectric properties of BaTiO3/Ferroelectric polymer composites by employing surface hydroxylated BaTiO3 nanoparticles’, ACS Appl. Mater. Interfaces, 2011, 3, (7), pp. 21842188.
    28. 28)
      • 35. Mackey, M., Schuele, D.E., Zhu, L., et al: ‘Reduction of dielectric hysteresis in multi layered films via nanoconfinement’, Macromolecules, 2012, 45, (4), pp. 19541962.
    29. 29)
      • 27. Song, Y., Shen, Y., Liu, H., et al: ‘Improving the dielectric constants and breakdown strength of polymer composites: effects of the shape of the BaTiO3 nanoinclusions, surface modification and polymer matrix’, J. Mater. Chem., 2012, 22, (32), pp. 1649116498.
    30. 30)
      • 32. Wang, Y., Cui, J., Yuan, Q., et al: ‘Significantly enhanced breakdown strength and energy density in sandwich-structured barium titanate/poly(vinylidene fluoride) nanocomposites’, Adv. Mater., 2015, 27, (42), pp. 66586663.
    31. 31)
      • 24. Kang, D., Wang, G., Huang, Y., et al: ‘Decorating TiO2 nanowires with BaTiO3 nanoparticles: a new approach leading to substantially enhanced energy storage capability of high-k polymer nanocomposites’, ACS Appl. Mater. Interfaces, 2018, 10, (4), pp. 40774085.
    32. 32)
      • 2. Li, Q., Chen, L., Gadinski, M.R., et al: ‘Flexible high-temperature dielectric materials from polymer nanocomposites’, Nature, 2015, 523, (7562), pp. 576579.
    33. 33)
      • 12. Shen, Y., Lin, Y., Li, M., et al: ‘High dielectric performance of polymer composite films induced by a percolating interparticle barrier layer’, Adv. Mater., 2007, 19, (10), pp. 14181422.
    34. 34)
      • 39. Zhang, T., Dan, Z., Shen, Z., et al: ‘An alternating multilayer architecture boosts ultrahigh energy density and high discharge efficiency in polymer composites’, RSC Adv., 2020, 10, (10), pp. 58865893.
    35. 35)
      • 15. Huang, X., Zhang, X., Ren, G.-K., et al: ‘Non-intuitive concomitant enhancement of dielectric permittivity, breakdown strength and energy density in percolative polymer nanocomposites by trace Ag nanodots’, J. Mater. Chem. A, 2019, 7, (25), pp. 1519815206.
    36. 36)
      • 19. Tang, H., Lin, Y., Sodano, H.A.: ‘Synthesis of high aspect ratio BaTiO3 Nanowires for high energy density nanocomposite capacitors’, Adv. Energy Mater., 2013, 3, (4), pp. 451456.
    37. 37)
      • 30. Kim, P., Doss, N.M., Tillotson, J.P., et al: ‘High energy density nanocomposites based on surface-modified BaTiO3 and a ferroelectric polymer’, ACS Nano, 2009, 3, (9), pp. 25812592.
    38. 38)
      • 33. Shen, Y., Shen, D., Zhang, X., et al: ‘High energy density of polymer nanocomposites at a low electric field induced by modulation of their topological-structure’, J. Mater. Chem. A, 2016, 4, (21), pp. 83598365.
    39. 39)
      • 10. Love, G.R.: ‘Energy storage in ceramic dielectrics’, J. Am. Ceram. Soc., 1990, 73, (2), pp. 323328.
    40. 40)
      • 43. Li, D., Xia, Y.: ‘Electrospinning of nanofibers: reinventing the wheel?’, Adv. Mater., 2004, 16, (14), pp. 11511170.
    41. 41)
      • 6. Zhang, X., Li, B.-W., Dong, L., et al: ‘Superior energy storage performances of polymer nanocomposites via modification of filler/polymer interfaces’, Adv. Mater. Interfaces, 2018, 5, (11), p. 1800096.
    42. 42)
      • 50. Yan, Y.-X., Yao, H.-B., Yu, S.-H.: ‘Nacre-like ternary hybrid films with enhanced mechanical properties by interlocked nanofiber design’, Adv. Mater. Interfaces, 2016, 3, (17), p. 1600296.
    43. 43)
      • 28. Yang, K., Huang, X., He, J., et al: ‘Strawberry-like core-shell Ag@polydopamine@BaTiO3Hybrid nanoparticles for high-kPolymer nanocomposites with high energy density and low dielectric loss’, Adv. Mater. Interfaces, 2015, 2, (17), p. 1500361.
    44. 44)
      • 41. Jiang, Y., Zhang, X., Shen, Z., et al: ‘Ultrahigh breakdown strength and improved energy density of polymer nanocomposites with gradient distribution of ceramic nanoparticles’, Adv. Funct. Mater., 2019, 30, (4), p. 1906112.
    45. 45)
      • 47. Shen, Z.H., Wang, J.J., Jiang, J.Y., et al: ‘Phase-field modeling and machine learning of electric-thermal-mechanical breakdown of polymer-based dielectrics’, Nat. Commun., 2019, 10, (1), p. 1843.
    46. 46)
      • 5. Li, Q., Yao, F.-Z., Liu, Y., et al: ‘High-temperature dielectric materials for electrical energy storage’, Annu. Rev. Mater. Res., 2018, 48, pp. 219240.
    47. 47)
      • 38. Jiang, J., Shen, Z., Qian, J., et al: ‘Synergy of micro-/mesoscopic interfaces in multilayered polymer nanocomposites induces ultrahigh energy density for capacitive energy storage’, Nano Energy, 2019, 62, pp. 220229.
    48. 48)
      • 21. Shaohui, L., Jiwei, Z., Jinwen, W., et al: ‘Enhanced energy storage density in poly(vinylidene fluoride) nanocomposites by a small loading of suface-hydroxylated Ba0.6Sr0.4TiO3 nanofibers’, ACS Appl. Mater. Interfaces, 2014, 6, (3), pp. 15331540.
    49. 49)
      • 9. Li, Q., Liu, F., Yang, T., et al: ‘Sandwich-structured polymer nanocomposites with high energy density and great charge-discharge efficiency at elevated temperatures’, Proc. Natl. Acad. Sci. U.S.A., 2016, 113, (36), pp. 999510000.
    50. 50)
      • 44. Nan, C.W.: ‘Physics of inhomogeneous inorganic materials’, Prog. Mater. Sci., 1993, 37, (1), pp. 1116.
    51. 51)
      • 26. Zhang, X., Jiang, J., Shen, Z., et al: ‘Polymer nanocomposites with ultrahigh energy density and high discharge efficiency by modulating their nanostructures in three dimensions’. Adv. Mater., 2018, 30, (16), p. e1707269.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-nde.2020.0034
Loading

Related content

content/journals/10.1049/iet-nde.2020.0034
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading