Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon openaccess Liquid-phase preparation of BaTiO3 nanoparticles

Barium titanate (BaTiO3, BT) is widely used in the manufacture of electronic components such as multilayer ceramic capacitors, supercapacitors, thermistors, ferroelectric devices and piezoelectric devices due to its excellent dielectric, ferroelectric, piezoelectric and insulating properties. The performance of BT-based components is highly dependent on the quality of the BT nanoparticles. Large particle size and uneven distribution are the disadvantages of the BT nanoparticles synthesised by the traditional solid-phase reaction, however, the liquid-phase method can overcome these shortcomings, which has the characteristics of high purity and uniform composition with small particle size, and therefore is the main method for the preparation of BT nanoparticles. This review described various liquid-phase preparation methods of BT nanoparticles and compared the advantages and disadvantages of these methods, thereafter the optimised process parameters that affected the BT crystalline quality were summarised so as to obtain BT nanoparticles with a high crystalline quality, small particle size and even distribution.

References

    1. 1)
      • 33. Bisen, S., Mishra, A., Jarabana, K.M.: ‘Studies of ferroelectric and dielectric properties of pure and doped barium titanate prepared by sol-gel method’. AIP Conf. Proc., 2016, p. 050070.
    2. 2)
      • 49. Tu, Y.-L., Calzada, M.L., Phillips, N.J., et al: ‘Synthesis and electrical characterization of thin films of PT and PZT made from a diol-based sol-gel route’, J. Am. Ceram. Soc., 1996, 79, pp. 441448.
    3. 3)
      • 8. Tai, R.Z., Namikawa, K., Sawada, A., et al: ‘Picosecond view of microscopic-scale polarization clusters in paraelectric BaTiO3’, Phys. Rev. Lett., 2004, 93, p. 087601.
    4. 4)
      • 37. Hertl, W.: ‘Kinetics of barium titanate synthesis’, J. Am. Ceram. Soc., 1988, 71, pp. 879883.
    5. 5)
      • 10. Louh, R.F., Hsu, Y.H.: ‘Fabrication of barium titanate ferroelectric layers by electrophoretic deposition technique’, Mater. Chem. Phys., 2003, 79, pp. 226229.
    6. 6)
      • 59. Lee, C.H., Shin, H.S., Yeo, D.H., et al: ‘Sintering and microstructure of BaTiO3 nano particles synthesized by molten salt method’, J. Nanosci. Nanotechnol., 2016, 16, p. 5233.
    7. 7)
      • 54. Venkateswaran, U.D., Naik, V.M., Naik, R.: ‘High-pressure Raman studies of polycrystalline BaTiO3’, Phys. Rev. B, 1998, 58, pp. 1425614260.
    8. 8)
      • 51. Newalkar, B.L., Komarneni, S., Katsuki, H.: ‘Microwave-hydrothermal synthesis and characterization of barium titanate powders’, Mater. Res. Bull., 2001, 36, pp. 23472355.
    9. 9)
      • 39. Xue, L., Yan, Y.: ‘Controlling the morphology of nanostructured barium titanate by hydrothermal method’, J. Nano Nanotechnol., 2010, 10, pp. 973979.
    10. 10)
      • 12. Teague, J.R., Gerson, R., James, W.J.: ‘Dielectric hysteresis in single crystal BiFeO3’, Solid State Commun., 1970, 8, pp. 10731074.
    11. 11)
      • 14. Zhao, C., Huang, Y., Wu, J.: ‘Multifunctional barium titanate ceramics via chemical modification tuning phase structure’. InfoMat, 2020.
    12. 12)
      • 43. Hao, J.M., Eunhye, S., Saera, J., et al: ‘Solvothermal synthesis of ferroelectric BaTiO3 nanoparticles and their application to dye-sensitized solar cells’, J. Korean Phys. Soc., 2018, 73, pp. 627631.
    13. 13)
      • 26. He, X., Lee, H.-J., Ryu, S.-S., et al: ‘Effects of the processing parameters in the synthesis of BaTiO3 nanoparticle by using the co-precipitation method’, J. Korean Phys. Soc., 2014, 65, pp. 404407.
    14. 14)
      • 55. Finnie, K.S., Begg, B.D., Vance, E.R.: ‘Raman study of the relationship between room temperature tetragonarity and the Curie point of barium titanate’, J. Am. Ceram. Soc., 1996, 79, pp. 26662672.
    15. 15)
      • 61. Clabel, J.L.H., Awan, I.T., Pinto, A.H., et al: ‘Insights on the mechanism of solid state reaction between TiO2 and BaCO3 to produce BaTiO3 powders: the role of calcination, milling, and mixing solvent’, Ceram. Int., 2017, 5, (4), pp. 444451.
    16. 16)
      • 44. Kwon, S.G., Park, B.H., Choi, K., et al: ‘Solvothermally synthesized tetragonal barium titanate powders using H2O/EtOH solvent’, J. Eur. Ceram. Soc., 2006, 26, pp. 14011404.
    17. 17)
      • 23. Suzuki, K., Kijima, K.: ‘Phase transformation of BaTiO3 nanoparticles synthesized by RF-plasma CVD’, J. Alloys Compd., 2006, 419, pp. 234242.
    18. 18)
      • 21. Mgbemeje, E.A., Choi, D., Kue, A.M., et al: ‘Synthesis of BaTiO3 and SrTiO3 nanoparticles: effect of annealing temperatures on their morphological, crystalline, optical and photovoltaic properties’, Nanosci. Nanotechnol. Lett., 2016, 8, pp. 896902.
    19. 19)
      • 40. Moon, S., Lee, H.W., Choi, C.H., et al: ‘Influence of ammonia on properties of nanocrystalline barium titanate particles prepared by a hydrothermal method’, J. Am. Ceram. Soc., 2012, 95, pp. 22482253.
    20. 20)
      • 9. Kwei, G.H., Lawson, A.C., Billinge, S.J.L., et al: ‘Structures of the ferroelectric phases of barium titanate’, J. Phys. Chem., 1993, 97, pp. 23682377.
    21. 21)
      • 18. Abicht, H.-P., Völtzke, D., Schmidt, H.: ‘Preparation, characterization and sintering behavior of barium titanate powders coated with Ba-, Ca-, Si-and Ti-containing components’, Mater. Chem. Phys., 1997, 51, pp. 3541.
    22. 22)
      • 38. Ovramenko, N.: ‘Kinetics of hydrothermal synthesis of barium metatitanate’, Inorg. Mater., 1979, 15, p. 1560.
    23. 23)
      • 16. Roberts, S.: ‘Dielectric and piezoelectric properties of barium titanate’, Phys. Rev., 1947, 71, pp. 890895.
    24. 24)
      • 47. Moreira, M.L., Mambrini, G.P., Volanti, D.P., et al: ‘Hydrothermal microwave: a new route to obtain photoluminescent crystalline BaTiO3 nanoparticles’, Cheminform, 2010, 39, pp. 53815387.
    25. 25)
      • 42. Özen, M., Mertens, M., Snijkers, F., et al: ‘Hydrothermal synthesis and formation mechanism of tetragonal barium titanate in a highly concentrated alkaline solution’, Ceram. Int., 2016, 42, pp. 1096710975.
    26. 26)
      • 11. Morrison, F.D., Sinclair, D.C., West, A.R.: ‘Characterization of lanthanum-doped barium titanate ceramics using impedance spectroscopy’, J. Am. Ceram. Soc., 2001, 84, pp. 531538.
    27. 27)
      • 34. Li, J., Zhu, G., Xu, H., et al: ‘Preparation, structure and dielectric properties of substrate-free BaTiO3 thin films by sol–gel method’, J. Mater. Sci., Mater. Electron., 2017, 28, pp. 1296212966.
    28. 28)
      • 17. Chiang, Y.-M., Takagi, T.: ‘Grain-boundary chemistry of barium titanate and strontium titanate: iI, origin of electrical barriers in positive-temperature-coefficient thermistors’, J. Am. Ceram. Soc., 2010, 73, pp. 32863291.
    29. 29)
      • 35. Panomsuwan, G., Manuspiya, H.: ‘Correlation between size and phase structure of crystalline BaTiO3 particles synthesized by sol-gel method’, Mater. Res. Express, 2019, 28, pp. 1296212966.
    30. 30)
      • 31. Matsuda, H., Kuwabara, M., Yamada, K.-I., et al: ‘Optical absorption in sol-gel-derived crystalline barium titanium fine particles’, J. Am. Ceram. Soc., 1998, 81, pp. 30103012.
    31. 31)
      • 29. Gao, J., Zhi, Y., Ren, X., et al: ‘Surfactant-assisted synthesis of BaTiO3 nanoparticles by micro-emulsion method’, Metalurgija, 2015, 54, pp. 663666.
    32. 32)
      • 22. Min, M.D., Liu, Y.M., Song, C.Y., et al: ‘Photothermally-enabled pyro-catalysis of BaTiO3 nanoparticles composite membrane at liquid/air interface’, ACS Appl. Mater. Interfaces, 2018, 10, (25), pp. 2124621253, acsami.8b03411.
    33. 33)
      • 41. Xu, H., Gao, L.: ‘Hydrothermal synthesis of high-purity BaTiO3 powders: control of powder phase and size, sintering density, and dielectric properties’, Mater. Lett., 2004, 58, pp. 15821586.
    34. 34)
      • 57. Emelianov, N.: ‘Structure and dielectric properties of composite material based on surface-modified BaTiO3 nanoparticles in polystyrene’, Eur. Phys. J. Appl. Phys., 2015, 69, p. 10401.
    35. 35)
      • 28. Chen, J., Li, S.Q., Che, M.C., et al: ‘Preparation and characterisation of BaTiO3 nanopowder by microwave assisted microemulsion method’, Adv. Appl. Ceram., 2015, 114, pp. 150155.
    36. 36)
      • 20. Thakur, O., Prakash, C., Agrawal, D.: ‘Dielectric behavior of Ba0.95Sr0.05TiO3 ceramics sintered by microwave’, Mater. Sci. Eng., B, 2002, 96, pp. 221225.
    37. 37)
      • 53. Fontana, M.P., Lambert, M.: ‘Linear disorder and temperature dependence of Raman scattering in BaTiO3’, Solid State Commun., 1972, 10, pp. 14.
    38. 38)
      • 60. Jinhui, L., Koji, I., Akihiro, T., et al: ‘Synthesis of highly disperse tetragonal BaTiO3 nanoparticles with core–shell by a hydrothermal method’, J. Asian Ceram. Soc., 2017, 5, pp. 52335238.
    39. 39)
      • 25. Lu, W., Quilitz, M., Schmidt, H.: ‘Nanoscaled BaTiO3 powders with a large surface area synthesized by precipitation from aqueous solutions: preparation, characterization and sintering’, J. Eur. Ceram. Soc., 2007, 27, pp. 31493159.
    40. 40)
      • 30. Buchold, D.H.M., Feldmann, C.: ‘Microemulsion approach to non-agglomerated and crystalline nanomaterials’, Adv. Funct. Mater., 2010, 18, pp. 10021011.
    41. 41)
      • 6. Schlag, S., Eicke, H.-F., Stern, W.B.: ‘Size driven phase transition and thermodynamic properties of nanocrystalline BaTiO3’, Ferroelectrics, 1995, 173, pp. 351369.
    42. 42)
      • 19. Lin, M.-H., Lu, H.-Y.: ‘Densification retardation in the sintering of La2O3-doped barium titanate ceramic’, Mater. Sci. Eng., A, 2002, 323, pp. 167176.
    43. 43)
      • 15. Feteira, A., Sarma, K., Alford, N.M., et al: ‘Microwave dielectric properties of gallium-doped hexagonal barium titanate ceramics’, J. Am. Ceram. Soc., 2010, 86, pp. 511513.
    44. 44)
      • 4. Hippel, A.V.: ‘Ferroelectricity, domain structure, and phase transitions of barium titanate’, Rev. Modern Phys., 1950, 22, pp. 221237.
    45. 45)
      • 36. Mostafa, M., Ebnalwaled, K., Saied, H.A., et al: ‘Effect of laser beam on structural, optical, and electrical properties of BaTiO3 nanoparticles during sol-gel preparation’, J. Korean Ceram. Soc., 2018, 55, pp. 065062(1–9).
    46. 46)
      • 2. Yamamichi, S., Yabuta, H.: ‘(Ba+Sr)/Ti ratio dependence of the dielectric properties for (Ba0.5Sr0.5)TiO3 thin films prepared by ion beam sputtering’, Appl. Phys. Lett., 1994, 64, pp. 16441646.
    47. 47)
      • 5. Forsbergh, Jr.P.W.: ‘Domain structures and phase transitions in barium titanate’, Phys. Rev., 1949, 76, pp. 11871201.
    48. 48)
      • 46. Lane, M.K.M., Zimmerman, J.B.: ‘Controlling metal oxide nanoparticle size and shape with supercritical fluid synthesis’, Green Chem., 2019, 21, pp. 37693781.
    49. 49)
      • 32. Tihtih, M., Ibrahim, J.E.F.M., Kurovics, E., et al: ‘Study on the effect of Bi dopant on the structural and optical properties of BaTiO3 nanoceramics synthesized via sol-gel method’, J. Phys. Conf. Ser., 2020, 1527, p. 12043.
    50. 50)
      • 24. Abass, S.A., Afroz, K., Sourabh, D., et al: ‘Antibacterial and antibiofilm activity of barium titanate nanoparticles’, Mater. Lett., 2018, 229, pp. 130133.
    51. 51)
      • 7. Saha, S., Sinha, T.P., Mookerjee, A.: ‘Electronic structure, chemical bonding, and optical properties of paraelectric BaTiO3’, Phys. Rev. B, 2000, 62, pp. 699702.
    52. 52)
      • 45. Qi, H., Fang, L., Xie, W., et al: ‘Study on the hydrothermal synthesis of barium titanate nano-powders and calcination parameters’, J. Mater. Sci., Mater. Electron., 2015, 26, pp. 85558562.
    53. 53)
      • 13. Acosta, M., Novak, N., Rojas, V., et alBatio3-based piezoelectrics: fundamentals, current status, and perspectives’, Appl. Phys. Rev., 2017, 4, p. 041305.
    54. 54)
      • 50. Komarneni, S., Roy, R., Li, Q. H.: ‘Microwave-Hydrothermal Synthesis of Ceramic Powders’, Materials Research Bulletin, 1992, 27, (12), pp. 13931405.
    55. 55)
      • 48. Nyutu, E.K., Chen, C.H., Dutta, P.K., et al: ‘Effect of microwave frequency on hydrothermal synthesis of nanocrystalline tetragonal barium titanate’, J. Phys. Chem. C, 2008, 112, pp. 15211528.
    56. 56)
      • 52. Prado, L.R., de Resende, N.S., Silva, R.S., et al: ‘Influence of the synthesis method on the preparation of barium titanate nanoparticles’, Chem. Eng. Process., 2016, 103, pp. 1220.
    57. 57)
      • 1. Powles, J.G.: ‘Dielectric properties of mixed barium and strontium titanates at 10000 Mc./s’, Nature, 1948, 162, pp. 655655.
    58. 58)
      • 27. Taheri Mofassal, A., Tajally, M., Mirzaee, O.: ‘Comparison between microwave and conventional calcination techniques in regard to reactivity and morphology of co-precipitated BaTiO3 powder, and the electrical and energy storage properties of the sintered samples’, Ceram. Int., 2017, 43, pp. 80578064.
    59. 59)
      • 58. Fu, J., Hou, Y., Zheng, M., et al: ‘Improving dielectric properties of PVDF composites by employing surface modified strong polarized BaTiO3 particles derived by molten salt method’, ACS Appl. Mater. Interfaces, 2015, 7, pp. 2448024491.
    60. 60)
      • 3. Jona, F., Shirane, G.: ‘Ferroelectric crystals’ (Pergamon, Oxford, United kingdom, 1993).
    61. 61)
      • 56. Hoshina, T.: ‘Size effect of barium titanate: fine particles and ceramics’, J. Ceram. Soc. Japan, 2013, 121, pp. 156161.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-nde.2020.0021
Loading

Related content

content/journals/10.1049/iet-nde.2020.0021
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address