Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon openaccess Titania-based transformer nanofluid: a study on the synthesis for enhanced breakdown strength and its humidity ageing

Researches on the transformer oil-based nanofluids to determine its suitability for replacing the conventional liquid insulation has been consistently happening for more than a decade. Yet, to prepare an optimum blend of transformer oil-based nanofluid with the stability compliance and superior breakdown (BD) characteristics is still a key issue to be addressed. So to achieve the higher BD voltages (BDVs) with good stability, the nanoparticle and surfactant weights dispersed in the oil should be optimised to at least possible critical levels. In this work, dielectric BD characteristic of mineral oil dispersed with TiO2 nanoparticle and surfactant cetyl trimethyl ammonium bromide (CTAB) is been studied with the applied AC and DC high voltages, which is termed as titania-based transformer nanofluid (TTNF) for this study. Series of TTNF samples were synthesised with different weights of TiO2 nanoparticle and CTAB, and the partial discharge inception voltage, AC and DC BDV were experimented to ascertain the optimum concentration level. Results show that the AC and DC BDV enhanced up to 36.23 and 43.07%, respectively, for the TTNF prepared with 0.00562 wt% of TiO2 and its 1% weight of CTAB, which was stable for around eight weeks.

References

    1. 1)
      • 2. Segal, V., Hjortsberg, A., Rabinovich, A., et al: ‘AC (60 Hz) and impulse breakdown strength of a colloidal fluid based on transformer oil and magnetite nanoparticles’. Conf. Record of the 1998 IEEE Int. Symp. on Electrical Insulation, Arlington, Virginia, USA, 1998, vol. 2, pp. 619622.
    2. 2)
      • 38. Wang, Z., Zhou, Y., Lu, W., et al: ‘The impact of TiO2 nanoparticle concentration levels on impulse breakdown performance of mineral oil-based nanofluids’, Nanomaterials, 2019, 9, (4), p. 627.
    3. 3)
      • 36. Swati, K., Yadav, K.S., Sarathi, R., et al: ‘Understanding Corona discharge activity in titania nanoparticles dispersed in transformer oil under AC and DC voltages’, IEEE Trans. Dielectr. Electr. Insul., 2017, 24, (4), pp. 23252336.
    4. 4)
      • 10. Lv, Y., Ge, Y., Li, C., et al: ‘Effect of TiO2 nanoparticles on streamer propagation in transformer oil under lightning impulse voltage’, IEEE Trans. Dielectr. Electr. Insul., 2016, 23, (4), pp. 21102115.
    5. 5)
      • 63. Du, Y., Lv, Y., Li, C., et al: ‘Effect of electron shallow trap on breakdown performance of transformer oil-based nanofluids’, J. Appl. Phys., 2011, 110, (10), p. 104104.
    6. 6)
      • 24. Thabet, A., Allam, M., Shaaban, S.A.: ‘Investigation on enhancing breakdown voltages of transformer oil nanofluids using multi-nanoparticles technique’, IET Gener. Transm. Distrib., 2018, 12, (5), pp. 11711176.
    7. 7)
      • 58. Hadjadj, Y., Fofana, I., Van De Voort, F.R., et al: ‘Potential of determining moisture content in mineral insulating oil by Fourier transform infrared spectroscopy’, IEEE Electr. Insul. Mag., 2016, 32, (1), pp. 3439.
    8. 8)
      • 55. Mansour, D.E.A., Atiya, E.G.: ‘Application of UV/vis spectroscopy to assess the stability of oil-based nanofluids’. Annual Report - Conf. on Electrical Insulation on Dielectric Phenomena, CEIDP, Toronto, Ontario, Canada, 2016, vol. 2016, pp. 671674.
    9. 9)
      • 26. Lv, Y., Du, Q., Wang, L., et al: ‘Effect of TiO2 nanoparticles on the ion mobilities in transformer oil-based nanofluid’, AIP Adv., 2017, 7, (10), p. 105022.
    10. 10)
      • 59. Vahidi, F., Haegele, S., Tenbohlen, S., et al: ‘Study on moisture influence on electrical conductivity of natural ester fluid and mineral oil’. 2017 IEEE Electrical Insulation Conf. EIC 2017, Baltimore, MD, USA, June 2017, pp. 290293.
    11. 11)
      • 1. Gamez, C.: ‘Power transformer’, Transformers Magazine, 1, (1), 2014, pp. 1821.
    12. 12)
      • 4. Hwang, J.-W.G.: ‘Elucidating the mechanisms behind pre-breakdown phenomena in transformer oil systems’. Thesis (PhD), Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science, 2010.
    13. 13)
      • 61. Editor, B., Varennes, H.: ‘Engineering dielectrics: volume III electrical insulating liquids’, 1994.
    14. 14)
      • 20. Fernández, I., Valiente, R., Ortiz, F., et al: ‘Effect of TiO2 and zno nanoparticles on the performance of dielectric nanofluids based on vegetable esters during their aging’, Nanomaterials, 2020, 10, (4), pp. 118.
    15. 15)
      • 25. Sima, W., Shi, J., Yang, Q., et al: ‘Effects of conductivity and permittivity of nanoparticle on transformer oil insulation performance: experiment and theory’, IEEE Trans. Dielectr. Electr. Insul., 2015, 22, (1), pp. 380390.
    16. 16)
      • 35. Atiya, E.G., Mansour, D.E.A., Khattab, R.M., et al: ‘Dispersion behavior and breakdown strength of transformer oil filled with TiO2 nanoparticles’, IEEE Trans. Dielectr. Electr. Insul., 2015, 22, (5), pp. 24632472.
    17. 17)
      • 22. Mansour, D.E.A., Shaalan, E.M., Ward, S.A., et al: ‘Multiple nanoparticles for improvement of thermal and dielectric properties of oil nanofluids’, IET Sci. Meas. Technol., 2019, 13, (7), pp. 968974.
    18. 18)
      • 52. Israelachvili, J.N.: ‘Electrostatic forces between’, 2011.
    19. 19)
      • 28. Abd-Elhady, A.M., Ibrahim, M.E., Taha, T.A., et al: ‘Effect of temperature on AC breakdown voltage of nanofilled transformer oil’, IET Sci. Meas. Technol., 2018, 12, (1), pp. 138144.
    20. 20)
      • 27. Mergos, J.A., Athanassopoulou, M.D., Argyropoulos, T.G., et al: ‘Dielectric properties of nanopowder dispersions in paraffin oil’, IEEE Trans. Dielectr. Electr. Insul., 2012, 19, (5), pp. 15021507.
    21. 21)
      • 16. Zhong, Y., Lv, Y., Li, C., et al: ‘Insulating properties and charge characteristics of natural ester fluid modified by TiO2 semiconductive nanoparticles’, IEEE Trans. Dielectr. Electr. Insul., 2013, 20, (1), pp. 135140.
    22. 22)
      • 54. Particle Sciences: ‘An overview of the Zeta potential’, Part. Sci., 2012, 2, pp. 14.
    23. 23)
      • 57. Sokolov, V., Koch, M.: ‘Moisture equilibrium and moisture migration moisture - frequently discussed’, Cigré, 2008, WG A2.30, p. 52.
    24. 24)
      • 42. Ghadimi, A., Metselaar, I.H.: ‘The influence of surfactant and ultrasonic processing on improvement of stability, thermal conductivity and viscosity of titania nanofluid’, Exp. Therm. Fluid Sci., 2013, 51, pp. 19.
    25. 25)
      • 39. Yuefan Du, , Yuzhen Lv, , Chengrong Li, , et al: ‘Effect of semiconductive nanoparticles on insulating performances of transformer oil’, IEEE Trans. Dielectr. Electr. Insul., 2012, 19, (3), pp. 770776.
    26. 26)
      • 44. Ali, H.M., Babar, H., Shah, T.R., et al: ‘Preparation techniques of TiO2 nanofluids and challenges: a review’, Appl. Sci., 2018, 8, (4), p. 587.
    27. 27)
      • 53. Malvern Instruments: ‘An Introduction to Zeta potential’, 2015, 2, pp. 16.
    28. 28)
      • 5. Kopcansky, P., Marton, K., Tomco, L., et al: ‘The DC- and AC-dielectric breakdown strength of magnetic fluids based on transformer oil’, Magnetohydrodynamics, 2005, 41, (4), pp. 391395.
    29. 29)
      • 34. Yang, L., Hu, Y.: ‘Toward TiO2 nanofluids—part 1: preparation and properties’, Nanoscale Res. Lett., 2017, 12, pp. 121.
    30. 30)
      • 51. Yu, W., Xie, H.: ‘A review on nanofluids: preparation, stability mechanisms, and applications’, J. Nanomater., 2012, 2012, pp. 117.
    31. 31)
      • 32. Taghizadeh-Tabari, Z., Zeinali Heris, S., Moradi, M., et al: ‘The study on application of TiO2/water nanofluid in plate heat exchanger of milk pasteurization industries’, Renew. Sustain. Energy Rev., 2016, 58, pp. 13181326.
    32. 32)
      • 43. Ghadimi, A., Saidur, R., Metselaar, H.S.C.: ‘A review of nanofluid stability properties and characterization in stationary conditions’, Int. J. Heat Mass Transf., 2011, 54, (17–18), pp. 40514068.
    33. 33)
      • 62. Haque, N., Dalai, S., Chatterjee, B., et al: ‘Investigations on charge trapping and de-trapping properties of polymeric insulators through discharge current measurements’, IEEE Trans. Dielectr. Electr. Insul., 2017, 24, (1), pp. 583591.
    34. 34)
      • 45. Zhao, M., Lv, W., Li, Y., et al: ‘A study on preparation and stabilizing mechanism of hydrophobic silica nanofluids’, Mater. (Basel), 2018, 11, (8), p. 1385.
    35. 35)
      • 13. Xiang, D., Shen, L., Wang, H.: ‘Investigation on the thermal conductivity of mineral oil-based alumina/aluminum nitride nanofluids’, Mater. (Basel), 2019, 12, (24), pp. 19.
    36. 36)
      • 3. O'Sullivan, F.M.: ‘A model for the initiation and propagation of electrical streamers in transformer oil and transformer oil based nanofluids’. Thesis (PhD), Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science, 2007, p. 309.
    37. 37)
      • 49. Israelachvili, J.N.: ‘Steric (polymer-mediated) and thermal fluctuation Forces1 diffuse interfaces in liquids 16.2 the states of polymers in solution and at surfaces’, 2011.
    38. 38)
      • 7. Jin, H., Andritsch, T., Tsekmes, I.A., et al: ‘Properties of mineral oil based silica nanofluids’, IEEE Trans. Dielectr. Electr. Insul., 2014, 21, (3), pp. 11001108.
    39. 39)
      • 56. Alafogianni, P., Dassios, K., Farmaki, S., et al: ‘On the efficiency of UV-vis spectroscopy in assessing the dispersion quality in sonicated aqueous suspensions of carbon nanotubes’, Colloids Surf. A Physicochem. Eng. Asp., 2016, 495, pp. 118124.
    40. 40)
      • 40. Primo, V.A., Garcia, B., Albarracin, R.: ‘Improvement of transformer liquid insulation using nanodielectric fluids: a review’, IEEE Electr. Insul. Mag., 2018, 34, (3), pp. 1326.
    41. 41)
      • 23. Huang, Z., Li, J., Yao, W., et al: ‘Electrical and thermal properties of insulating oil-based nanofluids: a comprehensive overview’, IET Nanodielectrics, 2019, 2, (1), pp. 2740.
    42. 42)
      • 18. Nor, S.F.M., Azis, N., Jasni, J., et al: ‘Investigation on the electrical properties of palm oil and coconut oil based TiO2 nanofluids’, IEEE Trans. Dielectr. Electr. Insul., 2017, 24, (6), pp. 34323442.
    43. 43)
      • 30. Khaled, U., Beroual, A.: ‘AC dielectric strength of synthetic ester-based Fe3O4, Al2O3 and SiO2 nanofluids-conformity with normal and weibull distributions’, IEEE Trans. Dielectr. Electr. Insul., 2019, 26, (2), pp. 625633.
    44. 44)
      • 33. Yang, L., Du, K., Niu, X., et al: ‘An experimental and theoretical study of the influence of surfactant on the preparation and stability of ammonia-water nanofluids’, Int. J. Refrig., 2011, 34, (8), pp. 17411748.
    45. 45)
      • 60. Forces, W.: ‘van der Waals forces’, Encycl. Earth Sci. Ser., 2011, Part 4, p. 943.
    46. 46)
      • 31. Mansour, D.E.A., Elsaeed, A.M., Izzularab, M.A.: ‘The role of interfacial zone in dielectric properties of transformer oil-based nanofluids’, IEEE Trans. Dielectr. Electr. Insul., 2016, 23, (6), pp. 33643372.
    47. 47)
      • 12. Peppas, G.D., Charalampakos, V.P., Pyrgioti, E.C., et al: ‘Statistical investigation of AC breakdown voltage of nanofluids compared with mineral and natural ester oil’, IET Sci. Meas. Technol., 2016, 10, (6), pp. 644652.
    48. 48)
      • 11. Chiesa, M., Das, S.K.: ‘Experimental investigation of the dielectric and cooling performance of colloidal suspensions in insulating media’, Colloids Surf. A Physicochem. Eng. Asp., 2009, 335, (1–3), pp. 8897.
    49. 49)
      • 14. Muangpratoom, P., Pattanadech, N., Kunakorn, A., et al: ‘Impulse breakdown characteristic of mineral oil based nanofluid’. 2017 IEEE 19th Int. Conf. on Dielectric Liquids ICDL 2017, Manchester, United Kingdom, 2017, vol. 2017, pp. 14.
    50. 50)
      • 29. Fal, J., Mahian, O., Zyła, G.: ‘Nanofluids in the service of high voltage transformers: breakdown properties of transformer oils with nanoparticles, a review’, Energies, 2018, 11, (11), p. 2942.
    51. 51)
      • 9. Cavallini, A., Karthik, R., Negri, F.: ‘The effect of magnetite, graphene oxide and silicone oxide nanoparticles on dielectric withstand characteristics of mineral oil’, IEEE Trans. Dielectr. Electr. Insul., 2015, 22, (5), pp. 25922600.
    52. 52)
      • 8. Lv, Y., Rafiq, M., Li, C., et al: ‘Study of dielectric breakdown performance of transformer oil based magnetic nanofluids’, Energies, 2017, 10, (7), p. 1025.
    53. 53)
      • 47. Chakraborty, S., Sarkar, I., Behera, D.K., et al: ‘Experimental investigation on the effect of dispersant addition on thermal and rheological characteristics of TiO2 nanofluid’, Powder Technol.., 2017, 307, pp. 1024.
    54. 54)
      • 50. Fuskele, V., Sarviya, R.M.: ‘Recent developments in nanoparticles synthesis, preparation and stability of nanofluids’, Mater. Today Proc., 2017, 4, (2), pp. 40494060.
    55. 55)
      • 37. Katiyar, A., Dhar, P., Nandi, T., et al: ‘Enhanced breakdown performance of anatase and rutile titania based nano-oils’, IEEE Trans. Dielectr. Electr. Insul., 2016, 23, (6), pp. 34943503.
    56. 56)
      • 21. Li, J., Zhang, Z., Zou, P., et al: ‘Preparation of a vegetable oil-based nanofluid and investigation of its breakdown and dielectric properties’, IEEE Electr. Insul. Mag., 2012, 28, (5), pp. 4350.
    57. 57)
      • 15. Lv, Y., Ge, Y., Sun, Z., et al: ‘Effect of nanoparticle morphology on pre-breakdown and breakdown properties of insulating oil-based nanofluids’, Nanomaterials, 2018, 8, (7), p. 476.
    58. 58)
      • 46. Zhen Lv, Y., Li, C., Sun, Q., et al: ‘Effect of dispersion method on stability and dielectric strength of transformer oil-based TiO2 nanofluids’, Nanoscale Res. Lett., 2016, 11, (1), pp. 49.
    59. 59)
      • 19. Madavan, R., Balaraman, S.: ‘Investigation on effects of different types of nanoparticles on critical parameters of nano-liquid insulation systems’, J. Mol. Liq., 2017, 230, pp. 437444.
    60. 60)
      • 41. Li, Y., Zhou, J., Tung, S., et al: ‘A review on development of nanofluid preparation and characterization’, Powder Technol.., 2009, 196, (2), pp. 89101.
    61. 61)
      • 48. Saleh, R., Putra, N., Wibowo, R.E., et al: ‘Titanium dioxide nanofluids for heat transfer applications’, Exp. Therm. Fluid Sci., 2014, 52, pp. 1929.
    62. 62)
      • 17. Das, A.K., Chatterjee, S.: ‘Impulse performance of synthetic esters based-nanofluid for power transformer’, Mater. Res. Express, 2018, 5, (12), p. 125026.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-nde.2020.0014
Loading

Related content

content/journals/10.1049/iet-nde.2020.0014
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address