Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon openaccess Analysis of space charge and charge trap characteristics of gamma irradiated silicone rubber nanocomposites

Silicone rubber is widely used for electrical insulation and may be exposed to a harsh environment. The present study envisaged to improve insulation properties of silicone rubber by adding an optimised quantity of nanofillers. The fundamental space charge and charge trap characteristics were studied by adopting the pulsed electroacoustic analysis technique and through surface potential measurement. The dielectric properties of the materials were analysed through measurement of permittivity and loss factor of the material at different frequencies and temperatures. The influence of gamma irradiation on variations in fundamental properties of the material was characterised. The results of the study indicate that 5 wt.% alumina added nanocomposites had better space charge performance under gamma irradiation compared with virgin silicone rubber.

References

    1. 1)
      • 1. Gorur, R.S., Cherney, E.A., Burnham, J.T.: ‘Outdoor insulators’ (Ravi S. Gorur Inc., Phoenix, Ariz., 1999, 1999th Ravi edn.).
    2. 2)
      • 20. Sarathi, R., Nandini, A., Tanaka, T.: ‘Understanding treeing phenomena and space charge effect in gamma-irradiated XLPE cable insulation’, Electr. Eng., 2011, 93, (4), pp. 199207.
    3. 3)
      • 18. Desai, B.M.A., Mishra, P., Vasa, N.J., et al: ‘Understanding the performance of corona aged epoxy nano micro composites’, Micro Nano Lett., 2018, 13, (9), pp. 12801285.
    4. 4)
      • 8. Yuan, C., Xie, C., Li, L., et al: ‘Surface potential decay on material samples taken from in-service aged HVDC silicone rubber composite insulators’, IEEE Trans. Dielectr. Electr. Insul., 2017, 24, (1), pp. 592600.
    5. 5)
      • 22. Singha, S., Thomas, M., Kulkarni, A.: ‘Complex permittivity characteristics of epoxy nanocomposites at low frequencies’, IEEE Trans. Dielectr. Electr. Insul., 2010, 17, (4), pp. 12491258.
    6. 6)
      • 21. Jose, J.P., Abraham, J., Maria, H.J., et al: ‘Contact angle studies in XLPE hybrid nanocomposites with inorganic nanofillers’, 2016, 366, (1), pp. 6678.
    7. 7)
      • 16. Mishra, P., Ashwin Desai, B.M., Vasa, N.J., et al: ‘Understanding the performance of gamma-ray-irradiated epoxy nanocomposites’, Micro Nano Lett., 2019, 14, (1), pp. 107112.
    8. 8)
      • 6. Tanaka, T.: ‘Dielectric nanocomposites with insulating properties’, IEEE Trans. Dielectr. Electr. Insul., 2005, 12, (5), pp. 914928.
    9. 9)
      • 2. Gubanski, S.M., Dernfalk, A., Andersson, J., et al: ‘Diagnostic methods for outdoor polymeric insulators’, IEEE Trans. Dielectr. Electr. Insul., 2007, 14, (5), pp. 10651080.
    10. 10)
      • 14. Verma, A.R., Reddy, G.S., Chakraborty, R.: ‘Multistress aging studies on polymeric insulators’, IEEE Trans. Dielectr. Electr. Insul., 2018, 25, (2), pp. 524532.
    11. 11)
      • 23. Singha, S., Thomas, M.: ‘Dielectric properties of epoxy nanocomposites’, IEEE Trans. Dielectr. Electr. Insul., 2008, 15, (1), pp. 1223.
    12. 12)
      • 4. Zha, J.-W., Dang, Z.-M., Li, W.-K., et al: ‘Effect of micro-Si3N4 -nano-Al2O3 co-filled particles on thermal conductivity, dielectric and mechanical properties of silicone rubber composites’, IEEE Trans. Dielectr. Electr. Insul., 2014, 21, (4), pp. 19891996.
    13. 13)
      • 19. Qiang, D., Wang, Y., Wang, X., et al: ‘The effect of filler loading ratios and moisture on DC conductivity and space charge behaviour of SiO2 and hBN filled epoxy nanocomposites’, J. Phys. D. Appl. Phys., 2019, 52, (39), (39), p. 395502-18.
    14. 14)
      • 10. Su, J., Du, B., Han, T., et al: ‘Nanoscale-trap-modulated electrical degradation in polymer dielectric composites using antioxidants as voltage stabilizers’, Compos. Part B Eng., 2019, 178, (August), p. 107434.
    15. 15)
      • 12. Wang, Y.-N., Wang, Y., Wu, J., et al: ‘Research progress on space charge measurement and space charge characteristics of nanodielectrics’, IET Nanodielectrics, 2018, 1, (3), pp. 114121.
    16. 16)
      • 13. Liu, P., Ning, X., Peng, Z., et al: ‘Effect of temperature on space charge characteristics in epoxy resin’, IEEE Trans. Dielectr. Electr. Insul., 2015, 22, (1), pp. 6571.
    17. 17)
      • 7. Du, B.X., Zhang, J.W., Gao, Y.: ‘Effects of TiO2 particles on surface charge of epoxy nanocomposites’, IEEE Trans. Dielectr. Electr. Insul., 2012, 19, (3), pp. 755762.
    18. 18)
      • 9. Li, J., Liang, H., Xiao, M., et al: ‘Mechanism of deep trap sites in epoxy/graphene nanocomposite using quantum chemical calculation’, IEEE Trans. Dielectr. Electr. Insul., 2019, 26, (5), pp. 15771580.
    19. 19)
      • 11. Yuan, C., Xie, C., Li, L., et al: ‘Space charge behavior in silicone rubber from in-service aged HVDC composite insulators’, IEEE Trans. Dielectr. Electr. Insul., 2019, 26, (3), pp. 843850.
    20. 20)
      • 5. Zhong, S., Dang, Z., Zhou, W., et al: ‘Past and future on nanodielectrics’, IET Nanodielectrics, 2018, 1, (1), pp. 4147.
    21. 21)
      • 25. Khan, I., Khan, S., Khan, W.: ‘Temperature-dependent dielectric and magnetic properties of Mn doped zinc oxide nanoparticles’, Mater. Sci. Semicond. Process., 2014, 26, pp. 516526.
    22. 22)
      • 24. Siddique, M.N., Ahmed, A., Tripathi, P.: ‘Electric transport and enhanced dielectric permittivity in pure and Al doped NiO nanostructures’, J. Alloys Compd., 2018, 735, pp. 516529.
    23. 23)
      • 3. Lau, K.Y., Vaughan, A.S., Chen, G.: ‘Nanodielectrics: opportunities and challenges’, IEEE Electr. Insul. Mag., 2015, 31, (4), pp. 4554.
    24. 24)
      • 17. Fu, M., Chen, G., Dissado, L.A., et al: ‘The effect of gamma irradiation on space charge behaviour and dielectric spectroscopy of low-density polyethylene’. 2007 IEEE INT. Conf. on Solid Dielectrics, Winchester, England, 2007, pp. 442445.
    25. 25)
      • 15. Sarathi, R., Mishra, P., Gautam, R., et al: ‘Understanding the influence of water droplet initiated discharges on damage caused to corona-aged silicone rubber’, IEEE Trans. Dielectr. Electr. Insul., 2017, 24, (4), pp. 24212431.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-nde.2019.0041
Loading

Related content

content/journals/10.1049/iet-nde.2019.0041
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address