http://iet.metastore.ingenta.com
1887

access icon openaccess Enhanced dielectric properties and energy storage of the sandwich-structured poly(vinylidene fluoride-co-hexafluoropropylene) composite films with functional BaTiO3@Al2O3 nanofibres

Loading full text...

Full text loading...

/deliver/fulltext/iet-nde/2/3/IET-NDE.2019.0010.html;jsessionid=27591y8u0qg8.x-iet-live-01?itemId=%2fcontent%2fjournals%2f10.1049%2fiet-nde.2019.0010&mimeType=html&fmt=ahah

References

    1. 1)
      • 1. Zheng, M.S., Zheng, Y.T., Zha, J.W., et al: ‘Improved dielectric, tensile and energy storage properties of surface rubberized BaTiO3/polypropylene nanocomposites’, Nano Energy, 2018, 40, pp. 144151.
    2. 2)
      • 2. Zhang, X., Shen, Y., Xu, B., et al: ‘Giant energy density and improved discharge efficiency of solution-processed polymer nanocomposites for dielectric energy storage’, Adv. Mater., 2016, 28, pp. 20552061.
    3. 3)
      • 3. Zheng, M.S., Zha, J.W., Yang, Y., et al: ‘Enhanced breakdown strength of poly(vinylidene fluoride) utilizing rubber nanoparticles for energy storage application’, Appl. Phys. Lett., 2016, 109, p. 072902.
    4. 4)
      • 4. Wang, G.Y., Huang, X.Y., Jiang, P.K., et al: ‘Tailoring dielectric properties and energy density of ferroelectric polymer nanocomposites by high-k nanowires’, ACS Appl. Mater. Interfaces, 2015, 7, pp. 1801718027.
    5. 5)
      • 5. Zheng, M.S., Zha, J.W, Yang, Y., et al: ‘Polyurethane induced high breakdown strength and high energy storage density in polyurethane/poly(vinylidene fluoride) composite films’, Appl. Phys. Lett., 2017, 110, p. 252902.
    6. 6)
      • 6. Feng, Z., Han, Y., Bi, M., et al: ‘Highly dispersive Ba0.6Sr0.4TiO3 nanoparticles modified P (VDF-HFP)/PMMA composite films with improved energy storage density and efficiency’, IET Nanodielectr., 2018, 1, pp. 6066.
    7. 7)
      • 7. Zhang, H.B., Zhu, Y.W., Li, Z.Y., et al: ‘High discharged energy density of polymer nanocomposites containing paraelectric SrTiO3 nanowires for flexible energy storage device’, J. Alloys Compd., 2018, 744, pp. 116123.
    8. 8)
      • 8. Wang, X.H., Chen, R.Z., Gui, Z.L., et al: ‘The grain size effect on dielectric properties of BaTiO3 based ceramics’, J. Mater. Sci. Eng. B, 2003, 99, pp. 199202.
    9. 9)
      • 9. Heywang, W.: ‘Semiconducting barium titanate’, J. Mater. Sci., 1971, 6, pp. 12141224.
    10. 10)
      • 10. Yang, X., Tang, L., Guo, Y., et al: ‘Improvement of thermal conductivities for PPS dielectric nanocomposites via incorporating NH2-POSS functionalized nBN fillers’, Compon. A, Appl. Sci. Manuf., 2017, 101, pp. 237242.
    11. 11)
      • 11. Tang, H.L., Wang, P., Zheng, P.L., et al: ‘Core-shell structured BaTiO3@polymer hybrid nanofiller for poly (arylene ether nitrile) nanocomposites with enhanced dielectric properties and high thermal stability’, Compos. Sci. Technol., 2016, 123, pp. 134142.
    12. 12)
      • 12. Bi, M.H., Hao, Y.N., Zhang, J.M., et al: ‘Particle size effect of BaTiO3 nanofillers on the energy storage performance of polymer nanocomposites’, Nanoscale, 2017, 9, p. 16386.
    13. 13)
      • 13. Yang, K., Huang, X.Y., Huang, Y.H., et al: ‘[email protected] BaTiO3 hybrid nanoparticles prepared via RAFT polymerization: toward ferroelectric polymer nanocomposites with high dielectric constant and low dielectric loss for energy storage application’, Chem. Mater., 2013, 25, pp. 23272338.
    14. 14)
      • 14. Almadhoun, M.N., Bhansali, U.S., Alshareef, H.N.: ‘Nanocomposites of ferroelectric polymers with surface-hydroxylated BaTiO3 nanoparticles for energy storage applications’, J. Mater. Chem., 2012, 22, pp. 1119611200.
    15. 15)
      • 15. Yuh, J., Nico, J.C., Sigmund, W.M.: ‘Synthesis of barium titanate (BaTiO3) nanofibers via electrospinning’, Mater. Lett., 2005, 59, pp. 36453647.
    16. 16)
      • 16. Zhou, T., Zha, J.W., Cui, R.Y., et al: ‘Improving dielectric properties of BaTiO3/ferroelectric polymer composites by employing surface hydroxylated BaTiO3 nanoparticles’, ACS Appl. Mater. Interfaces, 2011, 3, pp. 21842188.
    17. 17)
      • 17. Yuh, J., Perez, L., Sigmund, W.M., et al: ‘Sol-gel based synthesis of complex oxide nanofibers’, J. Sol-Gel Sci. Technol., 2007, 42, pp. 323329.
    18. 18)
      • 18. Yang, J., Zhang, J., Liang, C.Y., et al: ‘Ultrathin BaTiO3 nanowires with high aspect ratio: a simple one-step hydrothermal synthesis and their strong microwave absorption’, ACS Appl. Mater. Interfaces, 2013, 5, pp. 71467151.
    19. 19)
      • 19. Dang, Z.M., Wang, H.Y., Zhang, Y.H., et al: ‘Morphology and dielectric property of homogenous BaTiO3/PVDF nanocomposites prepared via the natural adsorption action of nanosized BaTiO3’, Macromol. Rapid Commun., 2010, 26, pp. 11851189.
    20. 20)
      • 20. Pan, Z.B., Yao, L.M., Zhai, J.W., et al: ‘Significantly improved dielectric properties and energy density of polymer nanocomposites via small loaded of BaTiO3 nanotubes’, Compos. Sci. Technol., 2017, 147, pp. 3038.
    21. 21)
      • 21. Shi, X.M., Zhou, W.P., Ma, D.L., et al: ‘Electrospinning of nanofibers and their applications for energy devices’, J. Nanomater, 2015, 16, p. 140716.
    22. 22)
      • 22. Zhong, S.L., Dang, Z.M., Zhou, W.Y., et al: ‘Past and future on nanodielectrics’, IET Nanodielectr., 2018, 1, pp. 4147.
    23. 23)
      • 23. Song, Y., Shen, Y., Liu, H.Y., et al: ‘Enhanced dielectric and ferroelectric properties induced by dopamine-modified BaTiO3 nanofibers in flexible poly(vinylidene fluoride-trifluoroethylene) nanocomposites’, J. Mater. Chem., 2012, 22, pp. 80638068.
    24. 24)
      • 24. Kim, P., Doss, N.M., Tillotson, J.P., et al: ‘High energy density nanocomposites based on surface-modified BaTiO3 and a ferroelectric polymer’, ACS Nano, 2009, 3, pp. 25812592.
    25. 25)
      • 25. Liu, S.H., Wang, J., Shen, B., et al: ‘Poly(vinylidene fluoride) nanocomposites with a small loading of core-shell structured BaTiO3@Al2O3 nanofibers exhibiting high discharged energy density and efficiency’, J. Alloys Compd., 2016, 43, pp. 585589.
    26. 26)
      • 26. Zhang, Y., Zhang, C., Feng, Y., et al: ‘Excellent energy storage performance and thermal property of polymer-T based composite induced by multifunctional one-dimensional nanofibers oriented in-plane direction’, Nano Energy, 2019, 56, pp. 138150.
    27. 27)
      • 27. Zhang, Z.C., Gu, Y.Z., Bi, J.Y., et al: ‘Tunable [email protected] SiO2 [email protected] filler reinforced polymer composite with high breakdown strength and release energy density’, Compos. A, 2016, 85, pp. 172180.
    28. 28)
      • 28. Chi, Q., Wang, X., Zhang, C., et al: ‘High energy storage density for poly(vinylidene fluoride) composites by introduced core-shell CaCu3Ti4O12@ Al2O3 nanofibers’, ACS Sustain. Chem. Eng., 2018, 6, pp. 86418649.
    29. 29)
      • 29. Feng, Y., Deng, Q., Peng, C., et al: ‘High dielectric and breakdown properties achieved in ternary BaTiO3/MXene/PVDF nanocomposites with low-concentration fillers from enhanced interface polarization’, Ceram. Int., 2019, 45, pp. 79237930.
    30. 30)
      • 30. Lu, X., Tong, Y., Cheng, Z.Y.: ‘Fabrication and characterization of free-standing, flexible and translucent BaTiO3-P (VDF-CTFE) nanocomposite films’, J. Alloys Compd., 2019, 770, pp. 327334.
    31. 31)
      • 31. Xia, W., Yin, Y., Xing, J., et al: ‘The effects of double-shell organic interfaces on the dielectric and energy storage properties of the P(VDF-CTFE)/[email protected]@PDA-Ag nanocomposite films’, Results Phys., 2018, 11, pp. 877884.
    32. 32)
      • 32. Yu, K., Niu, Y., Bai, Y., et al: ‘Poly(vinylidene fluoride) polymer based nanocomposites with significantly reduced energy loss by filling with core-shell structured BaTiO3/SiO2 nanoparticles’, Appl. Phys. Lett., 2013, 102, p. 102903.
    33. 33)
      • 33. Yao, M., You, S., Peng, Y.: ‘Dielectric constant and energy density of poly(vinylidene fluoride) nanocomposites filled with core–shell structured BaTiO3@Al2O3 nanoparticles’, Ceram. Int., 2017, 43, pp. 31273132.
    34. 34)
      • 34. Chi, Q., Gao, Z., Zhang, C., et al: ‘Microstructures and energy storage property of sandwiched [email protected]3O4/polyimide composites’, J. Mater. Sci., Mater. Electron., 2019, 30, pp. 18.
    35. 35)
      • 35. Cui, Y., Wang, X., Chi, Q., et al: ‘Sandwich structured BT-Fe3O4/PVDF composites with excellent dielectric properties and energy density’, J. Mater. Sci., Mater. Electron., 2017, 28, pp. 1190011906.
    36. 36)
      • 36. Dang, Z.M., Yuan, Y.J., Yao, S.H., et al: ‘Flexible nanodielectric materials with high permittivity for power energy storage’, Adv. Mater., 2013, 25, pp. 63346365.
    37. 37)
      • 37. Luo, B.C., Wang, X.H., Wang, Y.P., et al: ‘Fabrication, characterization, properties and theoretical analysis of ceramic/PVDF composite flexible films with high dielectric constant and low dielectric loss’, J. Mater. Chem. A, 2013, 2, pp. 510519.
    38. 38)
      • 38. Pan, Z.B., Yao, L.M., Zhao, J.W., et al: ‘Excellent energy density of polymer nanocomposites containing BaTiO3@Al2O3 nanofibers induced by moderate interfacial area’, J. Mater. Chem. A, 2016, 4, pp. 1325913264.
    39. 39)
      • 39. Zha, J.W., Dang, Z.M., Yang, T., et al: ‘Advanced dielectric properties of BaTiO3/polyvinylidene-fluoride nanocomposites with sandwich multi-layer structure’, IEEE Trans. Dielectr. Electr. Insul., 2012, 19, pp. 13121317.
    40. 40)
      • 40. Sun, J., Xue, Q.Z., Guo, Q.K., et al: ‘Excellent dielectric properties of polyvinylidene fluoride composites based on sandwich structured MnO2/graphene nanosheets/MnO2’, Compos. A, 2014, 67, pp. 252258.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-nde.2019.0010
Loading

Related content

content/journals/10.1049/iet-nde.2019.0010
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address