access icon openaccess Flexoelectricity in ferroelectric materials

Flexoelectricity is a gradient electromechanical effect that exists in all solid dielectrics. The effect was first predicted in the late 1950s, but received little interest because it was expected to be small. The experimentally measured large flexoelectric response in ferroelectric ceramics led to the revival of the field in the early 2000s. In this study, the progress made in the flexoelectric field is reviewed. The authors’ focus will be primarily on the experimental studies related to the flexoelectric effect. The techniques employed to measure the flexoelectric coefficients are first summarised. A compilation of the flexoelectric coefficients of different ferroelectrics reported in the literature will be presented. An unresolved issue in this field is that the measured flexoelectric coefficients in ferroelectric materials are normally much greater than the theoretically predicted values, and the mechanisms proposed to explain this issue are discussed. Finally, the efforts toward the applications of the flexoelectric effect are reviewed.

Inspec keywords: reviews; ferroelectric ceramics; flexoelectricity

Other keywords: ferroelectric ceramics; flexoelectric effect; flexoelectric coefficients; reviews; flexoelectricity; ferroelectric materials; flexoelectric field; flexoelectric response; gradient electromechanical effect; solid dielectrics

Subjects: Ferroelectricity and antiferroelectricity; Reviews and tutorial papers; resource letters; Piezoelectricity and electrostriction

References

    1. 1)
      • 48. Li, Q., Nelson, C.T., Hsu, S.L., et al: ‘Quantification of flexoelectricity in PbTiO3/SrTiO3 superlattice polar vortices using machine learning and phase-field modeling’, Nat. Commun., 2017, 8, (1), p. 1468.
    2. 2)
      • 37. Abdollahi, A., Millán, D., Peco, C., et al: ‘Revisiting pyramid compression to quantify flexoelectricity: A three-dimensional simulation study’, Phys. Rev. B, 2015, 91, (10), p. 104103.
    3. 3)
      • 62. Pertsev, N.A., Tagantsev, A.K., Setter, N.: ‘Phase transitions and strain-induced ferroelectricity in SrTiO3 epitaxial thin films’, Phys. Rev. B, 2000, 61, (2), pp. R825R829.
    4. 4)
      • 3. Mashkevich, V.S., Tolpygo, K.B.: ‘Electrical, optical, and elastic properties of diamond-type crystals’, Sov. Phys. JETP, 1957, 3, (5), pp. 435439.
    5. 5)
      • 30. Tagantsev, A.K., Meunier, V., Sharma, P.: ‘Novel electromechanical phenomena at the nanoscale: phenomenological theory and atomistic modeling’, MRS Bull., 2009, 34, (9), pp. 643647.
    6. 6)
      • 52. Shu, L., Wan, M., Wang, Z., et al: ‘Large flexoelectricity in Al2O3-doped Ba(Ti0.85Sn0.15)O3 ceramics’, Appl. Phys. Lett., 2017, 110, (19), p. 192903.
    7. 7)
      • 53. Vales-Castro, P., Roleder, K., Zhao, L., et al: ‘Flexoelectricity in antiferroelectrics’, Appl. Phys. Lett., 2018, 113, (13), p. 132903.
    8. 8)
      • 74. Yang, M., Kim, D., Alexe, M.: ‘Flexo-photovoltaic effect’, Science, 2018, 360, (6391), pp. 904907.
    9. 9)
      • 12. Ma, W., Cross, L.E.: ‘Flexoelectric polarization of barium strontium titanate in the paraelectric state’, Appl. Phys. Lett., 2002, 81, (18), pp. 34403442.
    10. 10)
      • 24. Biancoli, A., Fancher, C.M., Jones, J.L., et al: ‘Breaking of macroscopic centric symmetry in paraelectric phases of ferroelectric materials and implications for flexoelectricity’, Nat. Mater., 2015, 14, (2), p. 224.
    11. 11)
      • 71. Damodaran, A.R., Pandya, S., Qi, Y., et al: ‘Large polarization gradients and temperature-stable responses in compositionally-graded ferroelectrics’, Nat. Commun., 2017, 8, p. 14961.
    12. 12)
      • 61. Shen, S., Hu, S.: ‘A theory of flexoelectricity with surface effect for elastic dielectrics’, J. Mech. Phys. Solids, 2010, 58, (5), pp. 665677.
    13. 13)
      • 1. Cross, L.E.: ‘Flexoelectric effects: charge separation in insulating solids subjected to elastic strain gradients’, J. Mater. Sci., 2006, 41, (1), pp. 5363.
    14. 14)
      • 56. Zhang, X., Pan, Q., Tian, D., et al: ‘Large flexoelectric-like response from the spontaneously polarized surfaces in ferroelectric ceramics’, Phys. Rev. Lett., 2018, 121, (5), p. 057602.
    15. 15)
      • 38. Lu, J., Lv, J., Liang, X., et al: ‘Improved approach to measure the direct flexoelectric coefficient of bulk polyvinylidene fluoride’, J. Appl. Phys., 2016, 119, (9), p. 094104.
    16. 16)
      • 7. Zubko, P., Catalan, G., Tagantsev, A.K.: ‘Flexoelectric effect in solids’, Annu. Rev. Mater. Res., 2013, 43, (1), pp. 387421.
    17. 17)
      • 33. Lu, H., Gruverman, A.: ‘Mechanical writing of ferroelectric polarization’, Science, 2012, 336, (6077), pp. 5961.
    18. 18)
      • 16. Ma, W., Cross, L.E.: ‘Observation of the flexoelectric effect in relaxor Pb(Mg1/3Nb2/3)O3 ceramics’, Appl. Phys. Lett., 2001, 78, (19), pp. 29202921.
    19. 19)
      • 35. Bhaskar, U.K., Banerjee, N., Abdollahi, A., et al: ‘Flexoelectric MEMS: towards an electromechanical strain diode’, Nanoscale, 2016, 8, (3), pp. 12931298.
    20. 20)
      • 49. Gao, P., Yang, S., Ishikawa, R., et al: ‘Atomic-scale measurement of flexoelectric polarization at SrTiO3 dislocations’, Phys. Rev. Lett., 2018, 120, (26), p. 267601.
    21. 21)
      • 14. Ma, W., Cross, L.E.: ‘Flexoelectric effect in ceramic lead zirconate titanate’, Appl. Phys. Lett., 2005, 86, (7), p. 72905.
    22. 22)
      • 28. Chu, B., Zhu, W., Li, N., et al: ‘Flexoelectric composite-a new prospect for lead-free piezoelectrics’, Funct. Mater. Lett., 2010, 3, (1), pp. 7981.
    23. 23)
      • 50. Li, Y., Shu, L., Huang, W., et al: ‘Giant flexoelectricity in Ba0.6Sr0.4TiO3/Ni0.8Zn0.2Fe2O4 composite’, Appl. Phys. Lett., 2014, 105, (16), p. 162906.
    24. 24)
      • 68. Fu, J.Y., Zhu, W., Li, N., et al: ‘Gradient scaling phenomenon in microsize flexoelectric piezoelectric composites’, Appl. Phys. Lett., 2007, 91, (18), p. 182910.
    25. 25)
      • 29. Majdoub, M.S., Sharma, P., Cagin, T.: ‘Enhanced size-dependent super-piezoelectricity and elasticity in nanostructures due to the flexoelectric effect’, Phys. Rev. B, 2008, 77, (12), p. 125424.
    26. 26)
      • 42. Harden, J., Mbanga, B., Éber, N., et al: ‘Giant flexoelectricity of bent-core nematic liquid crystals’, Phys. Rev. Lett., 2006, 97, (15), p. 157802.
    27. 27)
      • 65. Fousek, J., Cross, L.E., Litvin, D.B.: ‘Possible piezoelectric composites based on the flexoelectric effect’, Mater. Lett., 1999, 39, (5), pp. 287291.
    28. 28)
      • 15. Ma, W., Cross, L.E.: ‘Large flexoelectric polarization in ceramic lead magnesium niobate’, Appl. Phys. Lett., 2001, 79, (26), pp. 44204422.
    29. 29)
      • 20. Tagantsev, A.K., Yurkov, A.S.: ‘Flexoelectric effect in finite samples’, J. Appl. Phys., 2012, 112, (4), p. 044103.
    30. 30)
      • 11. Ma, W., Cross, E.L.: ‘Strain-gradient-induced electric polarization in lead zirconate titanate ceramics’, Appl. Phys. Lett., 2003, 82, (19), pp. 32933295.
    31. 31)
      • 10. Tagantsev, A.K.: ‘Piezoelectricity and flexoelectricity in crystalline dielectrics’, Phys. Rev. B, 1986, 34, (8), pp. 58835889.
    32. 32)
      • 13. Ma, W., Cross, L.E.: ‘Flexoelectricity of barium titanate’, Appl. Phys. Lett., 2006, 88, (23), p. 232902.
    33. 33)
      • 55. Shu, L., Li, T., Wang, Z., et al: ‘Flexoelectric behavior in PIN-PMN-PT single crystals over a wide temperature range’, Appl. Phys. Lett., 2017, 111, (16), p. 162901.
    34. 34)
      • 60. Narvaez, J., Catalan, G.: ‘Origin of the enhanced flexoelectricity of relaxor ferroelectrics’, Appl. Phys. Lett., 2014, 104, (16), p. 162903.
    35. 35)
      • 43. Zhang, X., Liu, J., Chu, M., et al: ‘Flexoelectric piezoelectric metamaterials based on the bending of ferroelectric ceramic wafers’, Appl. Phys. Lett., 2016, 109, (7), p. 072903.
    36. 36)
      • 75. Liu, X., Zhang, F., Long, P., et al: ‘Anomalous photovoltaic effect in centrosymmetric ferroelastic BiVO4’, Adv. Mater., 2018, 30, (44), p. 1801619.
    37. 37)
      • 17. Jiang, X., Huang, W., Zhang, S.: ‘Flexoelectric nano-generator: materials, structures and devices’, Nano Energy, 2013, 2, (6), pp. 10791092.
    38. 38)
      • 36. Das, S., Wang, B., Cao, Y., et al: ‘Controlled manipulation of oxygen vacancies using nanoscale flexoelectricity’, Nat. Commun., 2017, 8, (1), p. 615.
    39. 39)
      • 66. Zhu, W., Fu, J.Y., Li, N., et al: ‘Piezoelectric composite based on the enhanced flexoelectric effects’, Appl. Phys. Lett., 2006, 89, (19), p. 192904.
    40. 40)
      • 8. Nguyen, T.D., Mao, S., Yeh, Y.W., et al: ‘Nanoscale flexoelectricity’, Adv. Mater., 2013, 25, (7), pp. 946974.
    41. 41)
      • 76. Zhang, S., Liu, K., Xu, M., et al: ‘A curved resonant flexoelectric actuator’, Appl. Phys. Lett., 2017, 111, (8), p. 82904.
    42. 42)
      • 51. Shu, L., Wei, X., Jin, L., et al: ‘Enhanced direct flexoelectricity in paraelectric phase of Ba(Ti0.87Sn0.13)O3 ceramics’, Appl. Phys. Lett., 2013, 102, (15), p. 152904.
    43. 43)
      • 69. Huang, W., Shu, L., Kwon, S.R., et al: ‘Fabrication and measurement of a flexoelectric micro-pyramid composite’, AIP Adv., 2014, 4, (12), p. 127115.
    44. 44)
      • 34. Bhaskar, U.K., Banerjee, N., Abdollahi, A., et al: ‘A flexoelectric microelectromechanical system on silicon’, Nat. Nanotechnol., 2015, 11, (3), pp. 263266.
    45. 45)
      • 70. Zhou, W., Hou, Y., Chen, P., et al: ‘The surface mechanism for the flexoelectric response in sodium bismuth titanate-based ferroelectric ceramics’, J. Am. Ceram. Soc., 2019, 102, (9), pp. 54545464.
    46. 46)
      • 44. Zhang, H., Chu, B.: ‘Energy harvesting by exploiting the enhanced flexoelectric-like response of reduced (Na0.5Bi0.5)0.92Ba0.08TiO3 ceramics’, J. Eur. Ceram. Soc., 2018, 38, (6), pp. 25202525.
    47. 47)
      • 6. Indenbom, V.L., Loginov, E.B., Osipov, M.V.: ‘Flexoelectric effect and crystal-structure’, Kristalografija, 1981, 6, (26), pp. 11571162.
    48. 48)
      • 26. Garten, L.M., Troliermckinstry, S.: ‘Enhanced flexoelectricity through residual ferroelectricity in barium strontium titanate’, J. Appl. Phys., 2015, 117, (9), p. 094102.
    49. 49)
      • 63. Zhu, J., Chen, T., Shu, L., et al: ‘Flexoelectric fatigue in (K,Na,Li)(Nb,Sb)O3 ceramics’, Appl. Phys. Lett., 2018, 113, (18), p. 180901.
    50. 50)
      • 67. Zhou, W., Chu, B.: ‘Sodium bismuth titanate-based lead-free RAINBOW piezoelectric devices’, J. Eur. Ceram. Soc., 2017, 37, (6), pp. 23732377.
    51. 51)
      • 77. Huang, W., Kwon, S., Zhang, S., et al: ‘A trapezoidal flexoelectric accelerometer’, J. Intell. Mater. Syst. Struct., 2014, 25, (3), pp. 271277.
    52. 52)
      • 19. Lee, D., Yoon, A., Jang, S.Y., et al: ‘Giant flexoelectric effect in ferroelectric epitaxial thin films’, Phys. Rev. Lett., 2011, 107, (5), p. 57602.
    53. 53)
      • 9. Tagantsev, A.K.: ‘Theory of flexoelectric effects in crystals’, Zh. Eksp. Teor. Fiz., 1985, 88, (6), pp. 21082122.
    54. 54)
      • 41. Chu, B., Zhu, W., Li, N., et al: ‘Flexure mode flexoelectric piezoelectric composites’, J. Appl. Phys., 2009, 106, (10), p. 104109.
    55. 55)
      • 5. Kogan, S.M.: ‘Piezoelectric effect under an inhomogeneous strain and acoustic scattering of carriers in crystals’, Sov. Phys. Solid State, 1964, 5, (10), pp. 20692070.
    56. 56)
      • 25. Narvaez, J., Saremi, S., Hong, J., et al: ‘Large flexoelectric anisotropy in paraelectric barium titanate’, Phys. Rev. Lett., 2015, 115, (3), p. 37601.
    57. 57)
      • 27. Narvaez, J., Vasquezsancho, F., Catalan, G.: ‘Enhanced flexoelectric-like response in oxide semiconductors’, Nature, 2016, 538, (7624), pp. 219221.
    58. 58)
      • 54. Hana, P.: ‘Study of flexoelectric phenomenon from direct and from inverse flexoelectric behavior of PMNT ceramic’, Ferroelectrics, 2007, 351, (1), pp. 196203.
    59. 59)
      • 21. Zhou, W., Chen, P., Pan, Q., et al: ‘Lead-free metamaterials with enormous apparent piezoelectric response’, Adv. Mater., 2015, 27, (41), pp. 63496355.
    60. 60)
      • 22. Vasquez Sancho, F., Abdollahi, A., Damjanovic, D., et al: ‘Flexoelectricity in bones’, Adv. Mater., 2018, 30, (9), p. 1705316.
    61. 61)
      • 32. Liang, X., Hu, S., Shen, S.: ‘Size-dependent buckling and vibration behaviors of piezoelectric nanostructures due to flexoelectricity’, Smart Mater. Struct., 2015, 24, (10), p. 105012.
    62. 62)
      • 78. Pan, Q., Fang, C., Luo, H., et al: ‘Magnetoelectric response from the enhanced ferromagnetism and flexoelectric response in reduced BiFeO3–based ceramic’, J. Eur. Ceram. Soc., 2019, 39, (4), pp. 10571064.
    63. 63)
      • 47. Shu, L., Li, F., Huang, W., et al: ‘Relationship between direct and converse flexoelectric coefficients’, J. Appl. Phys., 2014, 116, (14), p. 144105.
    64. 64)
      • 39. Zhou, Y., Liu, J., Hu, X., et al: ‘Flexoelectric effect in PVDF-based polymers’, IEEE Trans. Dielectr. Electr. Insul., 2017, 24, (2), pp. 727731.
    65. 65)
      • 2. Yudin, P.V., Tagantsev, A.K.: ‘Fundamentals of flexoelectricity in solids’, Nanotechnology, 2013, 24, (43), p. 432001.
    66. 66)
      • 73. Chen, P., Zhang, H., Chu, B.: ‘Strain gradient induced thermal–electrical response in paraelectric Na0.5Bi0.5TiO3-based ceramics’, Phys. Rev. Mater., 2018, 2, (3), p. 34401.
    67. 67)
      • 23. Zubko, P., Catalan, G., Buckley, A., et al: ‘Strain-gradient-induced polarization in SrTiO3 single crystals’, Phys. Rev. Lett., 2007, 99, (16), p. 167601.
    68. 68)
      • 46. Shu, L., Huang, W., Kwon, S.R., et al: ‘Converse flexoelectric coefficient f1212 in bulk Ba0.67Sr0.33TiO3’, Appl. Phys. Lett., 2014, 104, (23), p. 232902.
    69. 69)
      • 18. Catalan, G., Lubk, A., Vlooswijk, A.H., et al: ‘Flexoelectric rotation of polarization in ferroelectric thin films’, Nat. Mater., 2011, 10, (12), pp. 963967.
    70. 70)
      • 59. Abdollahi, A., Vásquez-Sancho, F., Catalan, G.: ‘Piezoelectric mimicry of flexoelectricity’, Phys. Rev. Lett., 2018, 121, (20), p. 205502.
    71. 71)
      • 40. Chu, B., Salem, D.R.: ‘Flexoelectricity in several thermoplastic and thermosetting polymers’, Appl. Phys. Lett., 2012, 101, (10), p. 103905.
    72. 72)
      • 64. Liang, X., Hu, S., Shen, S.: ‘Nanoscale mechanical energy harvesting using piezoelectricity and flexoelectricity’, Smart Mater. Struct., 2017, 26, (3), p. 35050.
    73. 73)
      • 45. Fu, J.Y., Zhu, W., Li, N., et al: ‘Experimental studies of the converse flexoelectric effect induced by inhomogeneous electric field in a barium strontium titanate composition’, J. Appl. Phys., 2006, 100, (2), p. 024112.
    74. 74)
      • 31. Deng, F., Deng, Q., Shen, S.: ‘A three-dimensional mixed finite element for flexoelectricity’, J. Appl. Mech., 2018, 85, (3), p. 031009.
    75. 75)
      • 57. Zhou, W., Zhang, H., Chen, P., et al: ‘Analysis of high temperature reduction process of Na0.5Bi0.5TiO3-based ceramics’, J. Eur. Ceram. Soc., 2017, 38, (4), pp. 14211426.
    76. 76)
      • 72. Liu, J.H., Chen, X., Li, Y., et al: ‘Ferroelectric polymer nanostructure with enhanced flexoelectric response for force-induced memory’, App. Phys. Lett., 2018, 113, (4), p. 042903.
    77. 77)
      • 4. Tolpygo, K.B.: ‘Long wavelength oscillations of diamond-type crystals including long range forces’, Sov. Phys. Solid State, 1963, 7, (4), pp. 12971305.
    78. 78)
      • 58. Zhou, W., Chu, B.: ‘Strong electromechanical response in lead zirconate titanate metamaterials’, J. Am. Ceram. Soc., 2016, 99, (10), pp. 33173324.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-nde.2018.0030
Loading

Related content

content/journals/10.1049/iet-nde.2018.0030
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading