Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon openaccess Lattice dynamics and phonon characteristics of complex perovskite microwave ceramics

Complex perovskite microwave dielectric ceramics (MWDCs) of -type (A = Ba, Sr,…; B′ = Mg, Zn,…; B″ = Nb, Ta), which exhibit excellent dielectric properties, have currently been widely used in microwave and millimetre wave devices. Vibrational spectra, including both Raman and far-infrared (FIR) spectra, are powerful tools to investigate the atomic thermal vibrational properties of MWDCs and reveal the intrinsic origin of dielectric properties. In this review, lattice dynamics and phonon characteristics of the -type MWDCs are summarised and presented in detail to introduce remarkable progress in this field and make a guide for the design of novel advanced MWDCs. The atomic sites and the corresponding modes in Raman and FIR spectra are identified and illuminated. The effects of the processing conditions and the ordered superstructures in the nanoscale region on vibrational modes are summarised systemically. Intrinsic properties can be extrapolated from the fitting results of FIR spectroscopy, which were also discussed based on the Kramers–Krönig relations, Lorentz three-parameter classical model and four-parameter semi-quantum model. The correlations between vibrational modes (phonons), crystal structures, and dielectric properties are created, which can help to build the mathematical models so as to understand the structure–property relationship of MWDCs better.

References

    1. 1)
      • 98. Liang, K., Shi, F., Liu, H.Q., et al: ‘Far infrared reflection study on structure–property relationship of Ba[Mg(1−x)/3ZrxTa2(1−x)/3]O3 ceramics’, J. Mater. Sci., Mater. Electron., 2016, 27, (1), pp. 800805.
    2. 2)
      • 58. Born, M., Huang, K.: ‘Dynamical theory of crystal lattices’ (Oxford University Press, London, 1954).
    3. 3)
      • 111. Venkatesh, J., Subramanian, V., Murthy, V.R.K.: ‘Far-IR reflectance study on (Ba(1−x)Srx) (Zn1/3Ta2/3)O3 dielectric resonators as a function of tolerance factor’, Physica B, Condens. Matter, 2000, 293, pp. 118124.
    4. 4)
      • 48. Cheng, H.F., Chia, C.T., Liu, H.L., et al: ‘Correlation of the phonon characteristics and microwave dielectric properties of the Ba(Mg1/3Ta2/3)O3 materials’, J. Eur. Ceram. Soc., 2007, 27, pp. 28932897.
    5. 5)
      • 71. Tamura, H., Sagala, D.A., Wakino, K.: ‘Lattice vibrations of Ba(Zn1/3Ta2/3)O3 crystal with ordered perovskite structure’, Jpn. J. Appl. Phys., 1986, 25, pp. 787791.
    6. 6)
      • 88. Webb, S.J., Breeze, J., Scott, R.I., et al: ‘Raman spectroscopic study of gallium-doped Ba (Zn1/3Ta2/3) O3’, J. Am. Ceram. Soc., 2002, 85, pp. 17531756.
    7. 7)
      • 47. Wang, C.H., Jing, X.P., Wang, L., et al: ‘XRD and Raman studies on the ordering/disordering of Ba(Mg1/3Ta2/3)O3’, J. Am. Ceram. Soc., 2009, 92, pp. 15471551.
    8. 8)
      • 61. Decicco, P.D., Johnson, F.A.: ‘Quantum theory of lattice dynamics’, Proc. R. Soc. Lond. A, Math. Phys. Sci., 1969, 310, pp. 111116.
    9. 9)
      • 15. Zhou, Y.Y., Tian, C.L., Meng, S.Q., et al: ‘Structural transitions and microwave dielectric properties of Ba2−2xSr2xSmSbO6 double perovskites’, J. Am. Ceram. Soc., 2012, 95, (5), pp. 16651670.
    10. 10)
      • 67. Lin, I.N., Chia, C.T., Liu, H.L., et al: ‘High frequency dielectric properties of Ba(Mg1/3Ta2/3)O3 complex perovskite ceramics’, J. Eur. Ceram. Soc., 2003, 23, pp. 26332637.
    11. 11)
      • 91. Diao, C.L., Shi, F.: ‘Effects of sintering temperatures on dielectric properties, vibrational modes and crystal structures in Ba[(Ni0.7Zn0.1)]1/3Nb2/3]O3 ceramics’, J. Mater. Sci., 2012, 47, pp. 54385445.
    12. 12)
      • 60. Wang, C.H., Liu, G.H., Jing, X.P., et al: ‘First-principle calculation and far infrared measurement for infrared-active modes of Ba(Mg1/3Ta2/3)O3’, J. Am. Ceram. Soc., 2010, 93, pp. 37823787.
    13. 13)
      • 51. Moreira, R.L., Matinaga, F.M., Dias, A.: ‘Raman-spectroscopic evaluation of the long-range order in Ba(B′1/3B″2/3)O3 ceramics’, Appl. Phys. Lett., 2001, 78, pp. 428430.
    14. 14)
      • 68. Gervais, F., Piriou, B.: ‘Temperature dependence of transverse-optic and longitudinal-optic modes in TiO2 (Rutile)’, Phys. Rev. B, 1974, 10, pp. 16421654.
    15. 15)
      • 55. Dias, A., Moreira, R.L.: ‘Far-infrared spectroscopy in ordered and disordered BaMg1/3Nb2/3O3 microwave ceramics’, J. Appl. Phys., 2003, 94, pp. 34143421.
    16. 16)
      • 34. Rao, C.N., Gopalakrishnan, J.: ‘New directions in solid state chemistry: structure, synthesis, properties, reactivity, and materials’ (Cambridge University Press, Cambridge, 1986).
    17. 17)
      • 90. Lee, C.C., Chou, C.C., Tsai, D.S.: ‘Variation in the ordering of Ba(Zn1/3Ta2/3)O3 with A-site substitutions’, Ferroelectrics, 1998, 206, pp. 293305.
    18. 18)
      • 54. Wang, C.H., Kuang, X.J., Jing, X.P., et al: ‘Far infrared reflection spectrum and IR-active modes of MgTiO3’, J. Appl. Phys., 2008, 103, p. 074105.
    19. 19)
      • 36. Lee, H.J., Park, H.M., Song, Y.W., et al: ‘Microstructure characterizations in calcium magnesium niobate’, J. Am. Ceram. Soc., 2001, 84, pp. 16321636.
    20. 20)
      • 87. Kim, B.K., Hamaguchi, H., Kim, I.T., et al: ‘Probing of 1:2 ordering in Ba(Ni1/3Nb2/3)O3 and Ba(Zn1/3Nb2/3)O3 ceramics by XRD and Raman spectroscopy’, J. Am. Ceram. Soc., 1995, 78, pp. 31173120.
    21. 21)
      • 73. Diao, C.L., Wang, C.H., Luo, N.N., et al: ‘First- principle calculation and assignment for vibrational spectra of Ba(Mg1/3Nb2/3)O3 microwave dielectric ceramic’, J. Appl. Phys., 2014, 115, p. 114103.
    22. 22)
      • 115. Kamba, S., Hughes, H., Noujni, D., et al: ‘Relationship between microwave and lattice vibration properties in Ba(Zn1/3Nb2/3)O3-based microwave dielectric ceramics’, J. Phys. D, Appl. Phys., 2004, 37, (14), p. 1980.
    23. 23)
      • 102. Dai, Y.D., Zhao, G.H., Liu, H.X.: ‘First-principles study of the dielectric properties of Ba(Zn1/3Nb2/3)O3 and Ba(Mg1/3Nb2/3)O3’, J. Appl. Phys., 2009, 105, p. 034111.
    24. 24)
      • 65. Damen, T.C., Porto, S.P.S., Tell, B.: ‘Raman effect in zinc oxide’, Phys. Rev., 1966, 142, pp. 570574.
    25. 25)
      • 22. Akbas, M.A., Davies, P.K.: ‘Ordering-induced microstructures and microwave dielectric properties of the Ba (Mg1/3Nb2/3)O3–BaZrO3 system’, J. Am. Ceram. Soc., 1998, 81, pp. 670676.
    26. 26)
      • 14. Xiang, H.C., Fang, L., Fang, W.S., et al: ‘A novel low-firing microwave dielectric ceramic Li2ZnGe3O8 with cubic spinel structure’, J. Eur. Ceram. Soc., 2017, 37, (2), pp. 625629.
    27. 27)
      • 109. Nakagawa, I.: ‘Shindo Bunkogaku (vibrational spectroscopy)’ (Gakkaishuppan-Center, Tokyo, 1987), p. 205[in Japanese].
    28. 28)
      • 43. Dong, H.L., Shi, F.: ‘Vibration spectra and structural characteristics of Ba[(Zn1−xMgx)1/3Nb2/3]O3 solid solutions’, Appl. Spectrosc. Rev., 2011, 46, pp. 207221.
    29. 29)
      • 45. Siny, I.G., Tao, R.W., Katiyar, R.S., et al: ‘Raman spectroscopy of Mg–Ta order–disorder in BaMg1/3Ta2/3O3’, J. Phys. Chem. Solids, 1998, 59, pp. 181195.
    30. 30)
      • 83. Zhang, H., Diao, C.L., Liu, S.L., et al: ‘X-ray diffraction and Raman scattering investigations on Ba[Mg(1−x)/3ZrxTa2(1−x)/3]O3 solid solutions’, J. Alloys Compd., 2014, 587, pp. 717723.
    31. 31)
      • 57. Cochran, W.: ‘The dynamics of atoms in crystals’ (Edward Arnold, London, 1973).
    32. 32)
      • 32. Burton, B.P.: ‘Why Pb(B1/3B′2/3)O3 perovskites disorder more easily than Ba(B 1/3B′2/3)O3 perovskites and the thermodynamics of 1:1-type short-range order in PMN’, J. Phys. Chem. Solids, 2000, 61, pp. 327333.
    33. 33)
      • 33. Goodenough, J.B., Longo, J.M.: ‘Crystallographic and magnetic properties of perovskite and perovskite-related compounds: new series’, vol. 4a, (Springer, Berlin, 1970).
    34. 34)
      • 93. Wei, D.M., Dong, H.L., Zhang, H., et al: ‘Correlation between crystal structures and vibration modes of Ba[(Zn1−xMgx)1/3Nb2/3]O3 ceramics as a function of sintering temperatures’, J. Mater. Sci., Mater. Electron., 2014, 25, pp. 27482758.
    35. 35)
      • 8. Reaney, I.M., Iddles, D.: ‘Microwave dielectric ceramics for resonators and filters in mobile phone networks’, J. Am. Ceram. Soc., 2006, 89, pp. 20632072.
    36. 36)
      • 5. Cruickshank, D.: ‘1–2 GHz dielectrics and ferrites: overview and perspectives’, J. Eur. Ceram. Soc., 2003, 23, pp. 27212726.
    37. 37)
      • 46. Galasso, F.: ‘Structure, properties, and preparation of perovskite-type compounds’ (Pergamon, New York, 1969).
    38. 38)
      • 42. Lee, H.J., Park, H.M., Song, Y.W., et al: ‘Microstructure and dielectric properties of barium strontium magnesium niobate’, J. Am. Ceram. Soc., 2001, 84, pp. 21052110.
    39. 39)
      • 28. Bhalla, A.S., Guo, R., Roy, R.: ‘The perovskite structure–a review of its role in ceramic science and technology’, Mater. Res. Innov., 2000, 4, (1), pp. 326.
    40. 40)
      • 96. Jiang, S.Z., Yue, Z.X., Shi, F.: ‘Effects of BaWO4 additive on Raman phonon modes and structure–property relationship of Ba(Mg1/3Ta2/3)O3 microwave dielectric ceramics’, J. Alloys Compd., 2015, 646, pp. 4955.
    41. 41)
      • 95. Diao, C.L., Shi, F.: ‘Correlation among dielectric properties, vibrational modes and crystal structures in Ba[SnxZn(1−x)/3Nb2(1−x)/3]O3 solid solutions’, J. Phys. Chem. C, 2012, 116, pp. 68526858.
    42. 42)
      • 44. Takahashi, T., Wu, E.J., Ven, A.V.D., et al: ‘First-principles investigation of B-site ordering in Ba(MgxTa1−x)O3 microwave dielectrics with the complex perovskite structure’, Jpn. J. Appl. Phys., 2000, 39, pp. 12411248.
    43. 43)
      • 77. Shi, F., Dong, H.L.: ‘Correlation between vibrational modes and structural characteristics of Ba[(Zn1−xMgx)1/3Ta2/3]O3 solid solutions’, CrystEngComm, 2012, 14, pp. 33733379.
    44. 44)
      • 39. Aleksandrov, K.S.: ‘The sequences of structural phase transitions in perovskites’, Ferroelectrics, 1976, 14, pp. 801805.
    45. 45)
      • 64. Kroumova, E., Aroyo, M.I., Perez-Mato, J.M., et al: ‘Bilbao crystallographic server: useful databases and tools for phase-transition studies’, Phase Transit., 2003, 76, pp. 155170.
    46. 46)
      • 21. Wang, Y., Zuo, R.Z.: ‘A novel low-temperature fired microwave dielectric ceramic BaMg2V2O8 with ultra-low loss’, J. Eur. Ceram. Soc., 2016, 36, (1), pp. 247251.
    47. 47)
      • 9. Freer, R., Azough, F.: ‘Microstructural engineering of microwave dielectric ceramics’, J. Eur. Ceram. Soc., 2008, 28, pp. 14331441.
    48. 48)
      • 20. Ichinose, N., Shimada, T.: ‘Effect of grain size and secondary phase on microwave dielectric properties of Ba(Mg1/3Ta2/3)O3 and Ba([Mg, Zn]1/3Ta2/3)O3 systems’, J. Eur. Ceram. Soc., 2006, 26, pp. 17551759.
    49. 49)
      • 79. Payne, M.C., Teter, M.P., Allan, D.C., et al: ‘Iterative minimization techniques for ab initio total-energy calculations molecular- dynamics and conjugate gradients’, Rev. Mod. Phys., 1992, 64, pp. 10451097.
    50. 50)
      • 12. Xu, Y., Chen, X.M., Wang, L.: ‘Sol–gel preparation of BaTi4O9 and Ba2Ti9O20’, J. Am. Ceram. Soc., 2001, 84, pp. 669671.
    51. 51)
      • 26. Samal, S.L., Rao, G.L.N., Raju, K.C.J., et al: ‘Microwave dielectric properties of new complex perovskites: (Ba1/3Ln2/3)(Zn1/3Ti2/3)O3 (Ln = La, Pr, and Nd) and (Ba(1+x)/3La(2−x)/3)(Zn1/3Ti(2−x)/3Nbx/3)O3’, Jpn. J. Appl. Phys., 2009, 48, p. 061401.
    52. 52)
      • 72. Chia, C.T., Chen, Y.C., Cheng, H.F.: ‘Correlation of microwave dielectric properties and normal vibration modes of Ba(Mg1/3Ta2/3O3–(1 − x)Ba(Mg1/3Nb2/3)O3 ceramics: I. Raman spectroscopy’, J. Appl. Phys., 2003, 94, pp. 33603364.
    53. 53)
      • 105. Spitzer, W.G., Miller, R.C., Kleinmam, D.A., et al: ‘Far infrared dielectric dispersion in BaTiO3, SrTiO3, and TiO2’, Phys. Rev., 1962, 126, pp. 17101721.
    54. 54)
      • 50. Moreira, R.L., Andreeta, M.R.B., Hernandes, A.C., et al: ‘Polarized micro-Raman spectroscopy of Ba(Mg1/3Ta2/3)O3 single crystal fibers’, Cryst. Growth Des., 2005, 5, pp. 14571462.
    55. 55)
      • 18. Zhang, J.J., Zhai, J.W., Chou, X.J., et al: ‘Microwave and infrared dielectric response of tunable Ba1−xSrxTiO3 ceramics’, Acta Mater., 2009, 57, (15), pp. 44914499.
    56. 56)
      • 6. Wakino, K.: ‘Miniaturization techniques of microwave components for mobile communications systems-using low loss dielectrics’, Ferroelectr. Rev., 2000, 2, pp. 149.
    57. 57)
      • 118. Gervais, F., Piriou, B.: ‘Temperature dependence of transverse- and longitudinal-optic modes in TiO2, (Rutile)’, Phys. Rev. B, 1980, 10, p. B203841.
    58. 58)
      • 75. Harris, D.C., Bertolucci, M.D.: ‘Symmetry and spectroscopy: an introduction to vibrational and electronic spectroscopy’ (Oxford University Press, New York, 1978), pp. 170173.
    59. 59)
      • 3. Fan, X.C., Chen, X.M., Liu, X.Q.: ‘Complex-permittivity measurement on high-Q materials via combined numerical approaches’, IEEE Trans. Microw. Theory, 2005, 53, pp. 31303134.
    60. 60)
      • 52. Shi, F., Dong, H.: ‘Correlation of crystal structure, dielectric properties and lattice vibration spectra of (Ba1−xSrx)(Zn1/3Nb2/3)O3 solid solutions’, Dalton Trans., 2011, 40, pp. 66596667.
    61. 61)
      • 40. Reaney, I.M., Colla, E.L., Setter, N.: ‘Dielectric and structural characteristics of Ba- and Sr-based complex perovskites as a function of tolerance factor’, Jpn. J. Appl. Phys., 1994, 33, pp. 39843990.
    62. 62)
      • 120. Woodward, P.M.: ‘Octahedral tilting in perovskites. II. Structure stabilizing forces’, Acta Crystallogr. B, 1997, 53, pp. 3243.
    63. 63)
      • 99. Wakino, K., Murata, M., Tamura, H.: ‘Far-infrared reflection spectra of Ba(Zn,Ta)O3–BaZrO3 dielectric resonator material’, J. Am. Ceram. Soc., 1986, 69, pp. 3437.
    64. 64)
      • 23. Bian, J.J., Wu, J.Y., Ubic, R., et al: ‘Structural stability and microwave dielectric properties of (1 − x)Ba(Mg1/2W1/2)O3−xBa(RE2/3W1/3)O3 (RE = Sm, Dy, Y, Yb) solid solutions’, J. Eur. Ceram. Soc., 2015, 35, (5), pp. 14311439.
    65. 65)
      • 92. Dong, H.L., Shi, F.: ‘Effect of synthesis temperature on crystal structure and phonon modes of Ba[Zn1/3(Nb0.4Ta0.6)2/3]O3 ceramics’, CrystEngComm, 2012, 14, pp. 82688273.
    66. 66)
      • 1. Vanderah, T.A.: ‘Talking ceramics’, Science, 2002, 298, pp. 11821184.
    67. 67)
      • 101. Shimada, T.: ‘Far-infrared reflection and microwave properties of Ba([Mg1−xZnx]1/3,Ta2/3)O3 ceramics’, J. Eur. Ceram. Soc., 2004, 24, pp. 17991803.
    68. 68)
      • 103. Shi, F., Gu, Y.F., Li, C.X.: ‘Fourier transform far-infrared reflection spectroscopy of Ba[Zn1/3(Nb1−xTax)2/3]O3 solid solutions’, Adv. Mater. Res., 2014, 873, pp. 316321.
    69. 69)
      • 107. Roessler, D.M.: ‘Kramers–Kronig analysis of reflection data’, Br. J. Appl. Phys., 1965, 16, pp. 11191123.
    70. 70)
      • 69. Rivier, N.: ‘Theory of crystal space groups and infra-red and Raman lattice processes of insulating crystals’, J. Mod. Opt., 1976, 23, pp. 167168.
    71. 71)
      • 10. Sebastian, M.T., Jantunen, H.: ‘Low loss dielectric materials for LTCC applications: a review’, Int. Mater. Rev., 2008, 53, pp. 5790.
    72. 72)
      • 35. Barker, A.S.: ‘Temperature dependence of transverse and longitudinal optic mode frequencies and charges in SrTiO3 and BaTiO3’, Phys. Rev., 1966, 145, pp. 391399.
    73. 73)
      • 112. Sawada, A., Kuwabara, T.: ‘Infrared study of Ba(Mg1/3Ta2/3)O3 ceramics for microwave resonator’, Ferroelectrics, 1989, 95, pp. 205208.
    74. 74)
      • 30. Lufaso, M.W.: ‘Crystal structures, modeling, and dielectric property relationships of 2:1 ordered Ba3MM′2O9 (M = Mg, Ni, Zn; M′ = Nb, Ta) perovskites’, Chem. Mater., 2004, 16, pp. 21482156.
    75. 75)
      • 81. Dias, A., Franklin, M.M., Roberto, L.M.: ‘Raman spectroscopy of (Ba1−xSrx)(Mg1/3Nb2/3)O3 solid solutions from microwave-hydrothermal powders’, Chem. Mater., 2007, 19, pp. 23352341.
    76. 76)
      • 19. Zhou, Y.Y., Yue, Z.X., Meng, S.Q.: ‘Structural transitions and microwave dielectric properties of (Ba,Sr)2LnSbO6 (Ln = La, Pr, Nd, Sm, Gd, Dy) double perovskites’, Ferroelectrics, 2012, 435, pp. 119128.
    77. 77)
      • 49. Chen, Y.C., Cheng, H.F., Liu, H.L., et al: ‘Correlation of microwave dielectric properties and normal vibration modes of xBa(Mg1/3Ta2/3)O3–(1 − x)Ba(Mg1/3Nb2/3)O3 ceramics: II. Infrared spectroscopy’, J. Appl. Phys., 2003, 94, pp. 33653370.
    78. 78)
      • 41. Nagai, T., Sugiyama, M., Sando, M., et al: ‘Structural changes in Ba(Sr1/3Ta2/3)O3-type perovskite compounds upon tilting of oxygen octahedra’, Jpn. J. Appl. Phys., 1997, 36, pp. 11461153.
    79. 79)
      • 29. Tamazyan, R., Smaalen, S.: ‘Quantitative description of the tilt of distorted octahedra in ABX3 structures’, Acta Crystallogr. B, 2007, 63, pp. 190200.
    80. 80)
      • 16. Mao, M.M., Chen, X.M., Liu, X.Q.: ‘Structure and microwave dielectric properties of solid solution in SrLaAlO4–Sr2TiO4 system’, J. Am. Ceram. Soc., 2011, 94, pp. 39483952.
    81. 81)
      • 84. Zhang, H., Diao, C.L., Liu, S.L., et al: ‘XRD and Raman studies on crystal structures and dielectric properties of Ba[Mg(1−x)/3ZrxNb2(1−x)/3]O3 solid solutions’, Ceram. Int., 2014, 4, pp. 24272434.
    82. 82)
      • 53. Chen, M.Y., Chia, C.T., Lin, I.N., et al: ‘Microwave properties of Ba(Mg1/3Ta2/3)O3, Ba(Mg1/3Nb2/3)O3 and Ba(Co1/3Nb2/3)O3 ceramics revealed by Raman scattering’, J. Eur. Ceram. Soc., 2006, 26, pp. 19651968.
    83. 83)
      • 13. Liu, B., Li, L., Liu, X.Q., et al: ‘Structural evolution of SrLaAl1−x(Zn0.5Ti0.5)xO4 ceramics and effects on their microwave dielectric properties’, J. Mater. Chem. C, 2016, 4, (21), pp. 46844691.
    84. 84)
      • 27. Dias, A., Matinaga, F.M., Moreira, R.L.: ‘Vibrational spectroscopy and electron–phonon interactions in microwave-hydrothermal synthesized Ba(Mn1/3Nb2/3)O3 complex perovskites’, J. Phys. Chem. B, 2009, 113, pp. 97499755.
    85. 85)
      • 104. Yue, Z.X., Shi, F., Gu, Y.F., et al: ‘Far-infrared reflection study of Ba[Mg(1−x)/3ZrxNb2(1−x)/3]O3 microwave dielectric ceramics’, Sci. Sin. Tech., 2014, 44, pp. 12471253.
    86. 86)
      • 63. Wang, C.H., Jing, X.P., Feng, W., et al: ‘Assignment of Raman-active vibrational modes of MgTiO3’, J. Appl. Phys., 2008, 104, p. 034112.
    87. 87)
      • 7. Scott, R.I., Thomas, M., Hampson, C.: ‘Development of low cost, high performance Ba(Zn1/3Nb2/3)O3 based materials for microwave resonator applications’, J. Eur. Ceram. Soc., 2003, 23, pp. 24672471.
    88. 88)
      • 25. Xu, Y., Fu, R.L., Agathopoulos, S., et al: ‘Synthesis and microwave dielectric properties of BaO–Sm2O3–5TiO2 ceramics with NdAlO3 additions’, Ceram. Int., 2016, 42, (13), pp. 1457314580.
    89. 89)
      • 86. Lee, H.J., Park, H.M., Song, Y.W., et al: ‘Microstructural characteristics of strontium magnesium niobate’, J. Am. Ceram. Soc., 2001, 84, pp. 30323036.
    90. 90)
      • 78. Shi, F., Dong, H.L.: ‘Correlation of the phonon characteristics and crystal structure of Ba[Zn1/3(Nb1−xTax)2/3]O3 solid solutions’, J. Appl. Phys., 2012, 111, p. 014111.
    91. 91)
      • 62. Fateley, W.G., Dollish, F.R., McDevitt, N.T., et al: ‘Infrared and Raman selection rules for molecular and lattice vibrations: the correlation method’ (John Wiley & Sons, Inc., USA, 1972).
    92. 92)
      • 37. Nagai, T., Sugaiyama, M., Sando, M.: ‘Anomaly in the infrared active phonon modes and its relationship to the dielectric constant of (Ba1−xSrx)(Mg1/3Ta2/3)O3 compound’, Jpn. J. Appl. Phys., 1996, 35, pp. 51635167.
    93. 93)
      • 100. Fukuda, K., Kitoh, R., Awai, I.: ‘Far-infrared reflection spectra of dielectric ceramics for microwave applications’, J. Am. Ceram. Soc., 1994, 77, pp. 149154.
    94. 94)
      • 94. Qiao, M.H., Bian, Y.J., Qi, G.H., et al: ‘Effects of sintering temperatures on dielectric properties, vibrational modes and crystal structures in Ba[Sn0.32Zn0.68/3Nb1.36/3]O3 ceramics’, J. Mater. Sci., Mater. Electron., 2014, 25, pp. 41294138.
    95. 95)
      • 66. Pezzotti, G.: ‘Raman spectroscopy of piezoelectrics’, J. Appl. Phys., 2013, 113, p. 211301.
    96. 96)
      • 4. Fu, M.S., Liu, X.Q., Chen, X.M., et al: ‘Effects of Mg substitution on microstructures and microwave dielectric properties of Ba(Zn1/3Nb2/3)O3 perovskite ceramics’, J. Am. Ceram. Soc., 2010, 93, pp. 787795.
    97. 97)
      • 110. Venkatesh, J., Sivasubramanian, V., Subramanian, V., et al: ‘Far IR reflectance study on B-site disordered Ba(Zn1/3Ta2/3)O3 dielectric resonator’, Mater. Res. Bull., 2000, 35, pp. 13251332.
    98. 98)
      • 76. Dias, A., Paschoal, C.W.A., Moreira, R.L.: ‘Infrared spectroscopic investigations in ordered barium magnesium niobate ceramics’, J. Am. Ceram. Soc., 2003, 86, pp. 19851987.
    99. 99)
      • 59. Farmer, V.C., Lazabrev, A.N.: ‘Symmetry and crystal vibrations’, in Farmer, V.C. (Ed.): ‘The infrared spectra of minerals’ (Bartholomew Press, London, 1974), pp. 5167.
    100. 100)
      • 31. Janaswamy, S., Murthy, G.S., Dias, E.D., et al: ‘Ordering in BaMg1/3Ta1/3Nb1/3O3 ceramics: an X-ray rietveld analysis’, Crystallogr. Rep., 2006, 51, pp. 231235.
    101. 101)
      • 119. Dong, H.L., Shi, F.: ‘Effects of synthesis temperatures on crystal structures and lattice vibration modes of (Ba0.3Sr0.7)[(Zn1−xMgx)1/3 Nb2/3]O3 solid solutions’, Metall. Mater. Trans. A, 2012, 43, pp. 51285139.
    102. 102)
      • 85. Shi, F., Dong, H.L.: ‘Vibrational modes and structural characteristics of (Ba0.3Sr0.7) [(ZnxMg1−x)1/3Nb2/3]O3 solid solutions’, Dalton Trans., 2011, 40, pp. 1159111598.
    103. 103)
      • 116. Pashkin, A., Kamba, S., Berta, M., et al: ‘High frequency dielectric properties of CaTiO3-based microwave ceramics’, J. Phys. D, Appl. Phys., 2005, 38, (5), p. 741.
    104. 104)
      • 108. Roessler, D.M.: ‘Kramers–Kronig analysis of non-normal incidence reflection’, Br. J. Appl. Phys., 1965, 16, pp. 13591367.
    105. 105)
      • 117. Petzelt, J., Pačesová, S., Fousek, J., et al: ‘Dielectric spectra of some ceramics for microwave applications in the range of 1010–1014 Hz’, Ferroelectrics, 1989, 93, (1), pp. 7785.
    106. 106)
      • 56. Sagala, D.A., Koyasu, S.: ‘Infrared reflection of Ba(Mg1/3Ta2/3)O3 ceramics’, J. Am. Ceram. Soc., 1993, 76, pp. 24332436.
    107. 107)
      • 70. Tao, R., Siny, I.G., Katiyar, R.S., et al: ‘Temperature-dependent Raman studies of Ba(Mg1/3Ta2/3)O3’, J. Raman Spectrosc., 1996, 27, pp. 873877.
    108. 108)
      • 114. Xi, H.H., Zhou, D., Xie, H.D., et al: ‘Raman spectra, infrared spectra, and microwave dielectric properties of low-temperature firing [(Li0.5Ln0.5)1−xCax]MoO4 (Ln = Sm and Nd) solid solution ceramics with scheelite structure’, J. Am. Ceram. Soc., 2015, 98, (2), pp. 587593.
    109. 109)
      • 24. Song, K.X., Liu, P., Lin, H.X., et al: ‘Symmetry of hexagonal ring and microwave dielectric properties of (Mg1−xLnx)2Al4Si5O18+x (Ln = La, Sm) cordierite-type ceramics’, J. Eur. Ceram. Soc., 2016, 36, (5), pp. 11671175.
    110. 110)
      • 17. Zhang, Y., Zhang, Y.C., Xiang, M.Q.: ‘Crystal structure and microwave dielectric characteristics of Zr-substituted CoTiNb2O8 ceramics’, J. Eur. Ceram. Soc., 2016, 36, (8), pp. 19451951.
    111. 111)
      • 97. Wang, L., Zhang, H., Leng, Y., et al: ‘Effects of CaTiO3 on crystal structures and dielectric properties of Ba(Zn1/3Nb2/3)O3 ceramics via X-ray diffraction and Raman spectroscopy’, J. Mater. Sci., Mater. Electron., 2014, 25, pp. 34033411.
    112. 112)
      • 80. Dai, Y.D., Zhao, G.H., Guo, L.L., et al: ‘First-principles study of the difference in permittivity between Ba(Mg1/3Ta2/3)O3 and Ba(Mg1/3Nb2/3)O3’, Solid State Commun., 2009, 149, pp. 791794.
    113. 113)
      • 2. Qiao, H.Y., Sun, H.Q., Li, J.Z., et al: ‘Structure, intrinsic properties and vibrational spectra of Pr(Mg1/2Sn1/2) O3 ceramic crystal’, Sci. Rep., 2017, 7, p. 13336.
    114. 114)
      • 89. Dias, A., Giminelli, V.S.T., Matinagaa, F.M., et al: ‘Raman scattering and X-ray diffraction investigations on hydrothermal barium magnesium niobate ceramics’, J. Eur. Ceram. Soc., 2001, 21, pp. 27392744.
    115. 115)
      • 106. Perry, C.H., McCarthy, D.J., Rupprecht, G.: ‘Dielectric dispersion of some perovskite zirconate’, Phys. Rev. A, 1965, 138, pp. 15371538.
    116. 116)
      • 82. Venkatesh, J., Subramanian, V., Murthy, V.R.K.: ‘Far-IR reflectance study on (Ba(1−x)Srx)(Zn1/3Ta2/3)O3 dielectric resonators as a function of tolerance factor’, Physica B, Condens. Matter, 2000, 293, pp. 118124.
    117. 117)
      • 38. Glazer, A.M.: ‘The classification of tilted octahedra in perovskites’, Acta Crystallogr. B, 1972, 28, pp. 33843392.
    118. 118)
      • 113. Zhou, D., Pang, L.X., Wang, H., et al: ‘Phase transition, Raman spectra, infrared spectra, band gap and microwave dielectric properties of low temperature firing (Na0.5xBi1-0.5x)(MoxV1−x)O4 solid solution ceramics with scheelite structures’, J. Mater. Chem., 2011, 21, (45), pp. 1841218420.
    119. 119)
      • 74. Poulet, H., Mathieu, J.P.: ‘Vibration spectra and symmetry of crystals’ (Cordon and Breach, New York, 1976), pp. 326, 498, 519 (translated by A. Simievic).
    120. 120)
      • 11. Richtmyer, R.D.: ‘Dielectric resonators’, J. Appl. Phys., 1939, 10, pp. 391398.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-nde.2018.0016
Loading

Related content

content/journals/10.1049/iet-nde.2018.0016
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address