http://iet.metastore.ingenta.com
1887

access icon openaccess Lattice dynamics and phonon characteristics of complex perovskite microwave ceramics

  • PDF
    2.3787736892700195MB
  • XML
    317.1943359375Kb
  • HTML
    334.173828125Kb
Loading full text...

Full text loading...

/deliver/fulltext/iet-nde/2/1/IET-NDE.2018.0016.html;jsessionid=5p477hm9u60u6.x-iet-live-01?itemId=%2fcontent%2fjournals%2f10.1049%2fiet-nde.2018.0016&mimeType=html&fmt=ahah

References

    1. 1)
      • 1. Vanderah, T.A.: ‘Talking ceramics’, Science, 2002, 298, pp. 11821184.
    2. 2)
      • 2. Qiao, H.Y., Sun, H.Q., Li, J.Z., et al: ‘Structure, intrinsic properties and vibrational spectra of Pr(Mg1/2Sn1/2) O3 ceramic crystal’, Sci. Rep., 2017, 7, p. 13336.
    3. 3)
      • 3. Fan, X.C., Chen, X.M., Liu, X.Q.: ‘Complex-permittivity measurement on high-Q materials via combined numerical approaches’, IEEE Trans. Microw. Theory, 2005, 53, pp. 31303134.
    4. 4)
      • 4. Fu, M.S., Liu, X.Q., Chen, X.M., et al: ‘Effects of Mg substitution on microstructures and microwave dielectric properties of Ba(Zn1/3Nb2/3)O3 perovskite ceramics’, J. Am. Ceram. Soc., 2010, 93, pp. 787795.
    5. 5)
      • 5. Cruickshank, D.: ‘1–2 GHz dielectrics and ferrites: overview and perspectives’, J. Eur. Ceram. Soc., 2003, 23, pp. 27212726.
    6. 6)
      • 6. Wakino, K.: ‘Miniaturization techniques of microwave components for mobile communications systems-using low loss dielectrics’, Ferroelectr. Rev., 2000, 2, pp. 149.
    7. 7)
      • 7. Scott, R.I., Thomas, M., Hampson, C.: ‘Development of low cost, high performance Ba(Zn1/3Nb2/3)O3 based materials for microwave resonator applications’, J. Eur. Ceram. Soc., 2003, 23, pp. 24672471.
    8. 8)
      • 8. Reaney, I.M., Iddles, D.: ‘Microwave dielectric ceramics for resonators and filters in mobile phone networks’, J. Am. Ceram. Soc., 2006, 89, pp. 20632072.
    9. 9)
      • 9. Freer, R., Azough, F.: ‘Microstructural engineering of microwave dielectric ceramics’, J. Eur. Ceram. Soc., 2008, 28, pp. 14331441.
    10. 10)
      • 10. Sebastian, M.T., Jantunen, H.: ‘Low loss dielectric materials for LTCC applications: a review’, Int. Mater. Rev., 2008, 53, pp. 5790.
    11. 11)
      • 11. Richtmyer, R.D.: ‘Dielectric resonators’, J. Appl. Phys., 1939, 10, pp. 391398.
    12. 12)
      • 12. Xu, Y., Chen, X.M., Wang, L.: ‘Sol–gel preparation of BaTi4O9 and Ba2Ti9O20’, J. Am. Ceram. Soc., 2001, 84, pp. 669671.
    13. 13)
      • 13. Liu, B., Li, L., Liu, X.Q., et al: ‘Structural evolution of SrLaAl1−x(Zn0.5Ti0.5)xO4 ceramics and effects on their microwave dielectric properties’, J. Mater. Chem. C, 2016, 4, (21), pp. 46844691.
    14. 14)
      • 14. Xiang, H.C., Fang, L., Fang, W.S., et al: ‘A novel low-firing microwave dielectric ceramic Li2ZnGe3O8 with cubic spinel structure’, J. Eur. Ceram. Soc., 2017, 37, (2), pp. 625629.
    15. 15)
      • 15. Zhou, Y.Y., Tian, C.L., Meng, S.Q., et al: ‘Structural transitions and microwave dielectric properties of Ba2−2xSr2xSmSbO6 double perovskites’, J. Am. Ceram. Soc., 2012, 95, (5), pp. 16651670.
    16. 16)
      • 16. Mao, M.M., Chen, X.M., Liu, X.Q.: ‘Structure and microwave dielectric properties of solid solution in SrLaAlO4–Sr2TiO4 system’, J. Am. Ceram. Soc., 2011, 94, pp. 39483952.
    17. 17)
      • 17. Zhang, Y., Zhang, Y.C., Xiang, M.Q.: ‘Crystal structure and microwave dielectric characteristics of Zr-substituted CoTiNb2O8 ceramics’, J. Eur. Ceram. Soc., 2016, 36, (8), pp. 19451951.
    18. 18)
      • 18. Zhang, J.J., Zhai, J.W., Chou, X.J., et al: ‘Microwave and infrared dielectric response of tunable Ba1−xSrxTiO3 ceramics’, Acta Mater., 2009, 57, (15), pp. 44914499.
    19. 19)
      • 19. Zhou, Y.Y., Yue, Z.X., Meng, S.Q.: ‘Structural transitions and microwave dielectric properties of (Ba,Sr)2LnSbO6 (Ln = La, Pr, Nd, Sm, Gd, Dy) double perovskites’, Ferroelectrics, 2012, 435, pp. 119128.
    20. 20)
      • 20. Ichinose, N., Shimada, T.: ‘Effect of grain size and secondary phase on microwave dielectric properties of Ba(Mg1/3Ta2/3)O3 and Ba([Mg, Zn]1/3Ta2/3)O3 systems’, J. Eur. Ceram. Soc., 2006, 26, pp. 17551759.
    21. 21)
      • 21. Wang, Y., Zuo, R.Z.: ‘A novel low-temperature fired microwave dielectric ceramic BaMg2V2O8 with ultra-low loss’, J. Eur. Ceram. Soc., 2016, 36, (1), pp. 247251.
    22. 22)
      • 22. Akbas, M.A., Davies, P.K.: ‘Ordering-induced microstructures and microwave dielectric properties of the Ba (Mg1/3Nb2/3)O3–BaZrO3 system’, J. Am. Ceram. Soc., 1998, 81, pp. 670676.
    23. 23)
      • 23. Bian, J.J., Wu, J.Y., Ubic, R., et al: ‘Structural stability and microwave dielectric properties of (1 − x)Ba(Mg1/2W1/2)O3−xBa(RE2/3W1/3)O3 (RE = Sm, Dy, Y, Yb) solid solutions’, J. Eur. Ceram. Soc., 2015, 35, (5), pp. 14311439.
    24. 24)
      • 24. Song, K.X., Liu, P., Lin, H.X., et al: ‘Symmetry of hexagonal ring and microwave dielectric properties of (Mg1−xLnx)2Al4Si5O18+x (Ln = La, Sm) cordierite-type ceramics’, J. Eur. Ceram. Soc., 2016, 36, (5), pp. 11671175.
    25. 25)
      • 25. Xu, Y., Fu, R.L., Agathopoulos, S., et al: ‘Synthesis and microwave dielectric properties of BaO–Sm2O3–5TiO2 ceramics with NdAlO3 additions’, Ceram. Int., 2016, 42, (13), pp. 1457314580.
    26. 26)
      • 26. Samal, S.L., Rao, G.L.N., Raju, K.C.J., et al: ‘Microwave dielectric properties of new complex perovskites: (Ba1/3Ln2/3)(Zn1/3Ti2/3)O3 (Ln = La, Pr, and Nd) and (Ba(1+x)/3La(2−x)/3)(Zn1/3Ti(2−x)/3Nbx/3)O3’, Jpn. J. Appl. Phys., 2009, 48, p. 061401.
    27. 27)
      • 27. Dias, A., Matinaga, F.M., Moreira, R.L.: ‘Vibrational spectroscopy and electron–phonon interactions in microwave-hydrothermal synthesized Ba(Mn1/3Nb2/3)O3 complex perovskites’, J. Phys. Chem. B, 2009, 113, pp. 97499755.
    28. 28)
      • 28. Bhalla, A.S., Guo, R., Roy, R.: ‘The perovskite structure–a review of its role in ceramic science and technology’, Mater. Res. Innov., 2000, 4, (1), pp. 326.
    29. 29)
      • 29. Tamazyan, R., Smaalen, S.: ‘Quantitative description of the tilt of distorted octahedra in ABX3 structures’, Acta Crystallogr. B, 2007, 63, pp. 190200.
    30. 30)
      • 30. Lufaso, M.W.: ‘Crystal structures, modeling, and dielectric property relationships of 2:1 ordered Ba3MM′2O9 (M = Mg, Ni, Zn; M′ = Nb, Ta) perovskites’, Chem. Mater., 2004, 16, pp. 21482156.
    31. 31)
      • 31. Janaswamy, S., Murthy, G.S., Dias, E.D., et al: ‘Ordering in BaMg1/3Ta1/3Nb1/3O3 ceramics: an X-ray rietveld analysis’, Crystallogr. Rep., 2006, 51, pp. 231235.
    32. 32)
      • 32. Burton, B.P.: ‘Why Pb(B1/3B′2/3)O3 perovskites disorder more easily than Ba(B 1/3B′2/3)O3 perovskites and the thermodynamics of 1:1-type short-range order in PMN’, J. Phys. Chem. Solids, 2000, 61, pp. 327333.
    33. 33)
      • 33. Goodenough, J.B., Longo, J.M.: ‘Crystallographic and magnetic properties of perovskite and perovskite-related compounds: new series’, vol. 4a, (Springer, Berlin, 1970).
    34. 34)
      • 34. Rao, C.N., Gopalakrishnan, J.: ‘New directions in solid state chemistry: structure, synthesis, properties, reactivity, and materials’ (Cambridge University Press, Cambridge, 1986).
    35. 35)
      • 35. Barker, A.S.: ‘Temperature dependence of transverse and longitudinal optic mode frequencies and charges in SrTiO3 and BaTiO3’, Phys. Rev., 1966, 145, pp. 391399.
    36. 36)
      • 36. Lee, H.J., Park, H.M., Song, Y.W., et al: ‘Microstructure characterizations in calcium magnesium niobate’, J. Am. Ceram. Soc., 2001, 84, pp. 16321636.
    37. 37)
      • 37. Nagai, T., Sugaiyama, M., Sando, M.: ‘Anomaly in the infrared active phonon modes and its relationship to the dielectric constant of (Ba1−xSrx)(Mg1/3Ta2/3)O3 compound’, Jpn. J. Appl. Phys., 1996, 35, pp. 51635167.
    38. 38)
      • 38. Glazer, A.M.: ‘The classification of tilted octahedra in perovskites’, Acta Crystallogr. B, 1972, 28, pp. 33843392.
    39. 39)
      • 39. Aleksandrov, K.S.: ‘The sequences of structural phase transitions in perovskites’, Ferroelectrics, 1976, 14, pp. 801805.
    40. 40)
      • 40. Reaney, I.M., Colla, E.L., Setter, N.: ‘Dielectric and structural characteristics of Ba- and Sr-based complex perovskites as a function of tolerance factor’, Jpn. J. Appl. Phys., 1994, 33, pp. 39843990.
    41. 41)
      • 41. Nagai, T., Sugiyama, M., Sando, M., et al: ‘Structural changes in Ba(Sr1/3Ta2/3)O3-type perovskite compounds upon tilting of oxygen octahedra’, Jpn. J. Appl. Phys., 1997, 36, pp. 11461153.
    42. 42)
      • 42. Lee, H.J., Park, H.M., Song, Y.W., et al: ‘Microstructure and dielectric properties of barium strontium magnesium niobate’, J. Am. Ceram. Soc., 2001, 84, pp. 21052110.
    43. 43)
      • 43. Dong, H.L., Shi, F.: ‘Vibration spectra and structural characteristics of Ba[(Zn1−xMgx)1/3Nb2/3]O3 solid solutions’, Appl. Spectrosc. Rev., 2011, 46, pp. 207221.
    44. 44)
      • 44. Takahashi, T., Wu, E.J., Ven, A.V.D., et al: ‘First-principles investigation of B-site ordering in Ba(MgxTa1−x)O3 microwave dielectrics with the complex perovskite structure’, Jpn. J. Appl. Phys., 2000, 39, pp. 12411248.
    45. 45)
      • 45. Siny, I.G., Tao, R.W., Katiyar, R.S., et al: ‘Raman spectroscopy of Mg–Ta order–disorder in BaMg1/3Ta2/3O3’, J. Phys. Chem. Solids, 1998, 59, pp. 181195.
    46. 46)
      • 46. Galasso, F.: ‘Structure, properties, and preparation of perovskite-type compounds’ (Pergamon, New York, 1969).
    47. 47)
      • 47. Wang, C.H., Jing, X.P., Wang, L., et al: ‘XRD and Raman studies on the ordering/disordering of Ba(Mg1/3Ta2/3)O3’, J. Am. Ceram. Soc., 2009, 92, pp. 15471551.
    48. 48)
      • 48. Cheng, H.F., Chia, C.T., Liu, H.L., et al: ‘Correlation of the phonon characteristics and microwave dielectric properties of the Ba(Mg1/3Ta2/3)O3 materials’, J. Eur. Ceram. Soc., 2007, 27, pp. 28932897.
    49. 49)
      • 49. Chen, Y.C., Cheng, H.F., Liu, H.L., et al: ‘Correlation of microwave dielectric properties and normal vibration modes of xBa(Mg1/3Ta2/3)O3–(1 − x)Ba(Mg1/3Nb2/3)O3 ceramics: II. Infrared spectroscopy’, J. Appl. Phys., 2003, 94, pp. 33653370.
    50. 50)
      • 50. Moreira, R.L., Andreeta, M.R.B., Hernandes, A.C., et al: ‘Polarized micro-Raman spectroscopy of Ba(Mg1/3Ta2/3)O3 single crystal fibers’, Cryst. Growth Des., 2005, 5, pp. 14571462.
    51. 51)
      • 51. Moreira, R.L., Matinaga, F.M., Dias, A.: ‘Raman-spectroscopic evaluation of the long-range order in Ba(B′1/3B″2/3)O3 ceramics’, Appl. Phys. Lett., 2001, 78, pp. 428430.
    52. 52)
      • 52. Shi, F., Dong, H.: ‘Correlation of crystal structure, dielectric properties and lattice vibration spectra of (Ba1−xSrx)(Zn1/3Nb2/3)O3 solid solutions’, Dalton Trans., 2011, 40, pp. 66596667.
    53. 53)
      • 53. Chen, M.Y., Chia, C.T., Lin, I.N., et al: ‘Microwave properties of Ba(Mg1/3Ta2/3)O3, Ba(Mg1/3Nb2/3)O3 and Ba(Co1/3Nb2/3)O3 ceramics revealed by Raman scattering’, J. Eur. Ceram. Soc., 2006, 26, pp. 19651968.
    54. 54)
      • 54. Wang, C.H., Kuang, X.J., Jing, X.P., et al: ‘Far infrared reflection spectrum and IR-active modes of MgTiO3’, J. Appl. Phys., 2008, 103, p. 074105.
    55. 55)
      • 55. Dias, A., Moreira, R.L.: ‘Far-infrared spectroscopy in ordered and disordered BaMg1/3Nb2/3O3 microwave ceramics’, J. Appl. Phys., 2003, 94, pp. 34143421.
    56. 56)
      • 56. Sagala, D.A., Koyasu, S.: ‘Infrared reflection of Ba(Mg1/3Ta2/3)O3 ceramics’, J. Am. Ceram. Soc., 1993, 76, pp. 24332436.
    57. 57)
      • 57. Cochran, W.: ‘The dynamics of atoms in crystals’ (Edward Arnold, London, 1973).
    58. 58)
      • 58. Born, M., Huang, K.: ‘Dynamical theory of crystal lattices’ (Oxford University Press, London, 1954).
    59. 59)
      • 59. Farmer, V.C., Lazabrev, A.N.: ‘Symmetry and crystal vibrations’, in Farmer, V.C. (Ed.): ‘The infrared spectra of minerals’ (Bartholomew Press, London, 1974), pp. 5167.
    60. 60)
      • 60. Wang, C.H., Liu, G.H., Jing, X.P., et al: ‘First-principle calculation and far infrared measurement for infrared-active modes of Ba(Mg1/3Ta2/3)O3’, J. Am. Ceram. Soc., 2010, 93, pp. 37823787.
    61. 61)
      • 61. Decicco, P.D., Johnson, F.A.: ‘Quantum theory of lattice dynamics’, Proc. R. Soc. Lond. A, Math. Phys. Sci., 1969, 310, pp. 111116.
    62. 62)
      • 62. Fateley, W.G., Dollish, F.R., McDevitt, N.T., et al: ‘Infrared and Raman selection rules for molecular and lattice vibrations: the correlation method’ (John Wiley & Sons, Inc., USA, 1972).
    63. 63)
      • 63. Wang, C.H., Jing, X.P., Feng, W., et al: ‘Assignment of Raman-active vibrational modes of MgTiO3’, J. Appl. Phys., 2008, 104, p. 034112.
    64. 64)
      • 64. Kroumova, E., Aroyo, M.I., Perez-Mato, J.M., et al: ‘Bilbao crystallographic server: useful databases and tools for phase-transition studies’, Phase Transit., 2003, 76, pp. 155170.
    65. 65)
      • 65. Damen, T.C., Porto, S.P.S., Tell, B.: ‘Raman effect in zinc oxide’, Phys. Rev., 1966, 142, pp. 570574.
    66. 66)
      • 66. Pezzotti, G.: ‘Raman spectroscopy of piezoelectrics’, J. Appl. Phys., 2013, 113, p. 211301.
    67. 67)
      • 67. Lin, I.N., Chia, C.T., Liu, H.L., et al: ‘High frequency dielectric properties of Ba(Mg1/3Ta2/3)O3 complex perovskite ceramics’, J. Eur. Ceram. Soc., 2003, 23, pp. 26332637.
    68. 68)
      • 68. Gervais, F., Piriou, B.: ‘Temperature dependence of transverse-optic and longitudinal-optic modes in TiO2 (Rutile)’, Phys. Rev. B, 1974, 10, pp. 16421654.
    69. 69)
      • 69. Rivier, N.: ‘Theory of crystal space groups and infra-red and Raman lattice processes of insulating crystals’, J. Mod. Opt., 1976, 23, pp. 167168.
    70. 70)
      • 70. Tao, R., Siny, I.G., Katiyar, R.S., et al: ‘Temperature-dependent Raman studies of Ba(Mg1/3Ta2/3)O3’, J. Raman Spectrosc., 1996, 27, pp. 873877.
    71. 71)
      • 71. Tamura, H., Sagala, D.A., Wakino, K.: ‘Lattice vibrations of Ba(Zn1/3Ta2/3)O3 crystal with ordered perovskite structure’, Jpn. J. Appl. Phys., 1986, 25, pp. 787791.
    72. 72)
      • 72. Chia, C.T., Chen, Y.C., Cheng, H.F.: ‘Correlation of microwave dielectric properties and normal vibration modes of Ba(Mg1/3Ta2/3O3–(1 − x)Ba(Mg1/3Nb2/3)O3 ceramics: I. Raman spectroscopy’, J. Appl. Phys., 2003, 94, pp. 33603364.
    73. 73)
      • 73. Diao, C.L., Wang, C.H., Luo, N.N., et al: ‘First- principle calculation and assignment for vibrational spectra of Ba(Mg1/3Nb2/3)O3 microwave dielectric ceramic’, J. Appl. Phys., 2014, 115, p. 114103.
    74. 74)
      • 74. Poulet, H., Mathieu, J.P.: ‘Vibration spectra and symmetry of crystals’ (Cordon and Breach, New York, 1976), pp. 326, 498, 519 (translated by A. Simievic).
    75. 75)
      • 75. Harris, D.C., Bertolucci, M.D.: ‘Symmetry and spectroscopy: an introduction to vibrational and electronic spectroscopy’ (Oxford University Press, New York, 1978), pp. 170173.
    76. 76)
      • 76. Dias, A., Paschoal, C.W.A., Moreira, R.L.: ‘Infrared spectroscopic investigations in ordered barium magnesium niobate ceramics’, J. Am. Ceram. Soc., 2003, 86, pp. 19851987.
    77. 77)
      • 77. Shi, F., Dong, H.L.: ‘Correlation between vibrational modes and structural characteristics of Ba[(Zn1−xMgx)1/3Ta2/3]O3 solid solutions’, CrystEngComm, 2012, 14, pp. 33733379.
    78. 78)
      • 78. Shi, F., Dong, H.L.: ‘Correlation of the phonon characteristics and crystal structure of Ba[Zn1/3(Nb1−xTax)2/3]O3 solid solutions’, J. Appl. Phys., 2012, 111, p. 014111.
    79. 79)
      • 79. Payne, M.C., Teter, M.P., Allan, D.C., et al: ‘Iterative minimization techniques for ab initio total-energy calculations molecular- dynamics and conjugate gradients’, Rev. Mod. Phys., 1992, 64, pp. 10451097.
    80. 80)
      • 80. Dai, Y.D., Zhao, G.H., Guo, L.L., et al: ‘First-principles study of the difference in permittivity between Ba(Mg1/3Ta2/3)O3 and Ba(Mg1/3Nb2/3)O3’, Solid State Commun., 2009, 149, pp. 791794.
    81. 81)
      • 81. Dias, A., Franklin, M.M., Roberto, L.M.: ‘Raman spectroscopy of (Ba1−xSrx)(Mg1/3Nb2/3)O3 solid solutions from microwave-hydrothermal powders’, Chem. Mater., 2007, 19, pp. 23352341.
    82. 82)
      • 82. Venkatesh, J., Subramanian, V., Murthy, V.R.K.: ‘Far-IR reflectance study on (Ba(1−x)Srx)(Zn1/3Ta2/3)O3 dielectric resonators as a function of tolerance factor’, Physica B, Condens. Matter, 2000, 293, pp. 118124.
    83. 83)
      • 83. Zhang, H., Diao, C.L., Liu, S.L., et al: ‘X-ray diffraction and Raman scattering investigations on Ba[Mg(1−x)/3ZrxTa2(1−x)/3]O3 solid solutions’, J. Alloys Compd., 2014, 587, pp. 717723.
    84. 84)
      • 84. Zhang, H., Diao, C.L., Liu, S.L., et al: ‘XRD and Raman studies on crystal structures and dielectric properties of Ba[Mg(1−x)/3ZrxNb2(1−x)/3]O3 solid solutions’, Ceram. Int., 2014, 4, pp. 24272434.
    85. 85)
      • 85. Shi, F., Dong, H.L.: ‘Vibrational modes and structural characteristics of (Ba0.3Sr0.7) [(ZnxMg1−x)1/3Nb2/3]O3 solid solutions’, Dalton Trans., 2011, 40, pp. 1159111598.
    86. 86)
      • 86. Lee, H.J., Park, H.M., Song, Y.W., et al: ‘Microstructural characteristics of strontium magnesium niobate’, J. Am. Ceram. Soc., 2001, 84, pp. 30323036.
    87. 87)
      • 87. Kim, B.K., Hamaguchi, H., Kim, I.T., et al: ‘Probing of 1:2 ordering in Ba(Ni1/3Nb2/3)O3 and Ba(Zn1/3Nb2/3)O3 ceramics by XRD and Raman spectroscopy’, J. Am. Ceram. Soc., 1995, 78, pp. 31173120.
    88. 88)
      • 88. Webb, S.J., Breeze, J., Scott, R.I., et al: ‘Raman spectroscopic study of gallium-doped Ba (Zn1/3Ta2/3) O3’, J. Am. Ceram. Soc., 2002, 85, pp. 17531756.
    89. 89)
      • 89. Dias, A., Giminelli, V.S.T., Matinagaa, F.M., et al: ‘Raman scattering and X-ray diffraction investigations on hydrothermal barium magnesium niobate ceramics’, J. Eur. Ceram. Soc., 2001, 21, pp. 27392744.
    90. 90)
      • 90. Lee, C.C., Chou, C.C., Tsai, D.S.: ‘Variation in the ordering of Ba(Zn1/3Ta2/3)O3 with A-site substitutions’, Ferroelectrics, 1998, 206, pp. 293305.
    91. 91)
      • 91. Diao, C.L., Shi, F.: ‘Effects of sintering temperatures on dielectric properties, vibrational modes and crystal structures in Ba[(Ni0.7Zn0.1)]1/3Nb2/3]O3 ceramics’, J. Mater. Sci., 2012, 47, pp. 54385445.
    92. 92)
      • 92. Dong, H.L., Shi, F.: ‘Effect of synthesis temperature on crystal structure and phonon modes of Ba[Zn1/3(Nb0.4Ta0.6)2/3]O3 ceramics’, CrystEngComm, 2012, 14, pp. 82688273.
    93. 93)
      • 93. Wei, D.M., Dong, H.L., Zhang, H., et al: ‘Correlation between crystal structures and vibration modes of Ba[(Zn1−xMgx)1/3Nb2/3]O3 ceramics as a function of sintering temperatures’, J. Mater. Sci., Mater. Electron., 2014, 25, pp. 27482758.
    94. 94)
      • 94. Qiao, M.H., Bian, Y.J., Qi, G.H., et al: ‘Effects of sintering temperatures on dielectric properties, vibrational modes and crystal structures in Ba[Sn0.32Zn0.68/3Nb1.36/3]O3 ceramics’, J. Mater. Sci., Mater. Electron., 2014, 25, pp. 41294138.
    95. 95)
      • 95. Diao, C.L., Shi, F.: ‘Correlation among dielectric properties, vibrational modes and crystal structures in Ba[SnxZn(1−x)/3Nb2(1−x)/3]O3 solid solutions’, J. Phys. Chem. C, 2012, 116, pp. 68526858.
    96. 96)
      • 96. Jiang, S.Z., Yue, Z.X., Shi, F.: ‘Effects of BaWO4 additive on Raman phonon modes and structure–property relationship of Ba(Mg1/3Ta2/3)O3 microwave dielectric ceramics’, J. Alloys Compd., 2015, 646, pp. 4955.
    97. 97)
      • 97. Wang, L., Zhang, H., Leng, Y., et al: ‘Effects of CaTiO3 on crystal structures and dielectric properties of Ba(Zn1/3Nb2/3)O3 ceramics via X-ray diffraction and Raman spectroscopy’, J. Mater. Sci., Mater. Electron., 2014, 25, pp. 34033411.
    98. 98)
      • 98. Liang, K., Shi, F., Liu, H.Q., et al: ‘Far infrared reflection study on structure–property relationship of Ba[Mg(1−x)/3ZrxTa2(1−x)/3]O3 ceramics’, J. Mater. Sci., Mater. Electron., 2016, 27, (1), pp. 800805.
    99. 99)
      • 99. Wakino, K., Murata, M., Tamura, H.: ‘Far-infrared reflection spectra of Ba(Zn,Ta)O3–BaZrO3 dielectric resonator material’, J. Am. Ceram. Soc., 1986, 69, pp. 3437.
    100. 100)
      • 100. Fukuda, K., Kitoh, R., Awai, I.: ‘Far-infrared reflection spectra of dielectric ceramics for microwave applications’, J. Am. Ceram. Soc., 1994, 77, pp. 149154.
    101. 101)
      • 101. Shimada, T.: ‘Far-infrared reflection and microwave properties of Ba([Mg1−xZnx]1/3,Ta2/3)O3 ceramics’, J. Eur. Ceram. Soc., 2004, 24, pp. 17991803.
    102. 102)
      • 102. Dai, Y.D., Zhao, G.H., Liu, H.X.: ‘First-principles study of the dielectric properties of Ba(Zn1/3Nb2/3)O3 and Ba(Mg1/3Nb2/3)O3’, J. Appl. Phys., 2009, 105, p. 034111.
    103. 103)
      • 103. Shi, F., Gu, Y.F., Li, C.X.: ‘Fourier transform far-infrared reflection spectroscopy of Ba[Zn1/3(Nb1−xTax)2/3]O3 solid solutions’, Adv. Mater. Res., 2014, 873, pp. 316321.
    104. 104)
      • 104. Yue, Z.X., Shi, F., Gu, Y.F., et al: ‘Far-infrared reflection study of Ba[Mg(1−x)/3ZrxNb2(1−x)/3]O3 microwave dielectric ceramics’, Sci. Sin. Tech., 2014, 44, pp. 12471253.
    105. 105)
      • 105. Spitzer, W.G., Miller, R.C., Kleinmam, D.A., et al: ‘Far infrared dielectric dispersion in BaTiO3, SrTiO3, and TiO2’, Phys. Rev., 1962, 126, pp. 17101721.
    106. 106)
      • 106. Perry, C.H., McCarthy, D.J., Rupprecht, G.: ‘Dielectric dispersion of some perovskite zirconate’, Phys. Rev. A, 1965, 138, pp. 15371538.
    107. 107)
      • 107. Roessler, D.M.: ‘Kramers–Kronig analysis of reflection data’, Br. J. Appl. Phys., 1965, 16, pp. 11191123.
    108. 108)
      • 108. Roessler, D.M.: ‘Kramers–Kronig analysis of non-normal incidence reflection’, Br. J. Appl. Phys., 1965, 16, pp. 13591367.
    109. 109)
      • 109. Nakagawa, I.: ‘Shindo Bunkogaku (vibrational spectroscopy)’ (Gakkaishuppan-Center, Tokyo, 1987), p. 205[in Japanese].
    110. 110)
      • 110. Venkatesh, J., Sivasubramanian, V., Subramanian, V., et al: ‘Far IR reflectance study on B-site disordered Ba(Zn1/3Ta2/3)O3 dielectric resonator’, Mater. Res. Bull., 2000, 35, pp. 13251332.
    111. 111)
      • 111. Venkatesh, J., Subramanian, V., Murthy, V.R.K.: ‘Far-IR reflectance study on (Ba(1−x)Srx) (Zn1/3Ta2/3)O3 dielectric resonators as a function of tolerance factor’, Physica B, Condens. Matter, 2000, 293, pp. 118124.
    112. 112)
      • 112. Sawada, A., Kuwabara, T.: ‘Infrared study of Ba(Mg1/3Ta2/3)O3 ceramics for microwave resonator’, Ferroelectrics, 1989, 95, pp. 205208.
    113. 113)
      • 113. Zhou, D., Pang, L.X., Wang, H., et al: ‘Phase transition, Raman spectra, infrared spectra, band gap and microwave dielectric properties of low temperature firing (Na0.5xBi1-0.5x)(MoxV1−x)O4 solid solution ceramics with scheelite structures’, J. Mater. Chem., 2011, 21, (45), pp. 1841218420.
    114. 114)
      • 114. Xi, H.H., Zhou, D., Xie, H.D., et al: ‘Raman spectra, infrared spectra, and microwave dielectric properties of low-temperature firing [(Li0.5Ln0.5)1−xCax]MoO4 (Ln = Sm and Nd) solid solution ceramics with scheelite structure’, J. Am. Ceram. Soc., 2015, 98, (2), pp. 587593.
    115. 115)
      • 115. Kamba, S., Hughes, H., Noujni, D., et al: ‘Relationship between microwave and lattice vibration properties in Ba(Zn1/3Nb2/3)O3-based microwave dielectric ceramics’, J. Phys. D, Appl. Phys., 2004, 37, (14), p. 1980.
    116. 116)
      • 116. Pashkin, A., Kamba, S., Berta, M., et al: ‘High frequency dielectric properties of CaTiO3-based microwave ceramics’, J. Phys. D, Appl. Phys., 2005, 38, (5), p. 741.
    117. 117)
      • 117. Petzelt, J., Pačesová, S., Fousek, J., et al: ‘Dielectric spectra of some ceramics for microwave applications in the range of 1010–1014 Hz’, Ferroelectrics, 1989, 93, (1), pp. 7785.
    118. 118)
      • 118. Gervais, F., Piriou, B.: ‘Temperature dependence of transverse- and longitudinal-optic modes in TiO2, (Rutile)’, Phys. Rev. B, 1980, 10, p. B203841.
    119. 119)
      • 119. Dong, H.L., Shi, F.: ‘Effects of synthesis temperatures on crystal structures and lattice vibration modes of (Ba0.3Sr0.7)[(Zn1−xMgx)1/3 Nb2/3]O3 solid solutions’, Metall. Mater. Trans. A, 2012, 43, pp. 51285139.
    120. 120)
      • 120. Woodward, P.M.: ‘Octahedral tilting in perovskites. II. Structure stabilizing forces’, Acta Crystallogr. B, 1997, 53, pp. 3243.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-nde.2018.0016
Loading

Related content

content/journals/10.1049/iet-nde.2018.0016
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address