http://iet.metastore.ingenta.com
1887

access icon openaccess High energy density polymer nanocomposites with Y-doped barium strontium titanate nanoparticles as fillers

  • PDF
    2.740218162536621MB
  • HTML
    70.4189453125Kb
  • XML
    69.986328125Kb
Loading full text...

Full text loading...

/deliver/fulltext/iet-nde/1/4/IET-NDE.2018.0015.html;jsessionid=1vnbw8u7bppbs.x-iet-live-01?itemId=%2fcontent%2fjournals%2f10.1049%2fiet-nde.2018.0015&mimeType=html&fmt=ahah

References

    1. 1)
      • 1. Li, J.Y., Zhang, L., Ducharme, S.: ‘Electric energy density of dielectric nanocomposites’, Appl. Phys. Lett., 2007, 90, (13), p. 132901.
    2. 2)
      • 2. Li, J., Claude, J., Norena-Franco, L., et al: ‘Electrical energy storage in ferroelectric polymer nanocomposites containing surface-functionalized BaTiO3 nanoparticles’, Chem. Mater., 2008, 20, pp. 63046306.
    3. 3)
      • 3. Tang, H., Lin, Y., Andrews, C., et al: ‘Nanocomposites with increased energy density through high aspect ratio PZT nanowires’, Nanotechnology, 2011, 22, (1), p. 015702.
    4. 4)
      • 4. Tang, H., Lin, Y., Sodano, H.A.: ‘Enhanced energy storage in nanocomposite capacitors through aligned PZT nanowires by uniaxial strain assembly’, Adv. Energy. Mater., 2012, 2, (4), pp. 469476.
    5. 5)
      • 5. Kim, P., Doss, N.M., Tillotson, J.P., et al: ‘High energy density nanocomposites based on surface-modified BaTiO3 and a ferroelectric polymer’, ACS Nano, 2009, 3, pp. 25812592.
    6. 6)
      • 6. Zhong, S.-L., Dang, Z.-M., Zhou, W.-Y., et al: ‘Past and future on nanodielectrics’, IET Nanodielectrics, 2018, 1, (1), pp. 4147.
    7. 7)
      • 7. Xia, W., Zhang, Z.: ‘PVDF-based dielectric polymers and their applications in electronic materials’, IET Nanodielectrics, 2018, 1, (1), pp. 1731.
    8. 8)
      • 8. Li, W., Meng, Q., Zheng, Y., et al: ‘Electric energy storage properties of poly(vinylidene fluoride)’, Appl. Phys. Lett., 2010, 96, (19), p. 192905.
    9. 9)
      • 9. Xia, W., Li, J., Zhang, Z., et al: ‘Poly (vinylidene fluoride-chlorotrifluoroethylene)/BaTiO3 composites with high electrical energy density’, Ferroelectrics, 2010, 407, (1), pp. 125133.
    10. 10)
      • 10. Zhang, G., Li, Q., Gu, H., et al: ‘Ferroelectric polymer nanocomposites for room-temperature electrocaloric refrigeration’, Adv. Mater., 2015, 27, (8), pp. 14501454.
    11. 11)
      • 11. Tan, Y., Zhang, J., Wu, Y., et al: ‘Unfolding grain size effects in barium titanate ferroelectric ceramics’, Sci. Rep., 2015, 5, p. 9953.
    12. 12)
      • 12. Krohns, S., Lunkenheimer, P., Meissner, S., et al: ‘The route to resource-efficient novel materials’, Nat. Mater., 2011, 10, (12), pp. 899901.
    13. 13)
      • 13. Li, Y., Yao, X., Zhang, L.: ‘High permittivity neodymium-doped barium titanate sintered in pure nitrogen’, Ceram. Int., 2004, 30, (7), pp. 13251328.
    14. 14)
      • 14. Rabuffetti, F.A., Culver, S.P., Lee, J.S., et al: ‘Local structural investigation of Eu3+-doped BaTiO3 nanocrystals’, Nanoscale, 2014, 6, (5), pp. 29092914.
    15. 15)
      • 15. Ferrarelli, M.C., Tan, C.C., Sinclair, D.C.: ‘Ferroelectric, electrical, and structural properties of Dy and Sc Co-doped BaTiO3’, J. Mater. Chem., 2011, 21, (17), p. 6292.
    16. 16)
      • 16. Freeman, C.L., Dawson, J.A., Chen, H.-R., et al: ‘Energetics of donor-doping, metal vacancies, and oxygen-loss in a-site rare-earth-doped BaTiO3’, Adv. Funct. Mater., 2013, 23, (31), pp. 39253928.
    17. 17)
      • 17. Xie, L., Huang, X., Li, B.W., et al: ‘Core-satellite [email protected]3 nanoassemblies for fabrication of polymer nanocomposites with high discharged energy density, high breakdown strength and low dielectric loss’, Phys. Chem. Chem. Phys., 2013, 15, (40), pp. 1756017569.
    18. 18)
      • 18. Feng, Z., Hao, Y., Bi, M., et al: ‘Highly dispersive Ba0.6Sr0.4TiO3 nanoparticles modified P(VDF-HFP)/PMMA composite films with improved energy storage density and efficiency’, IET Nanodielectrics, 2018, 1, (1), pp. 6066.
    19. 19)
      • 19. Tomer, V., Manias, E., Randall, C.A.: ‘High field properties and energy storage in nanocomposite dielectrics of poly(vinylidene fluoride-hexafluoropropylene)’, J. Appl. Phys., 2011, 110, (4), p. 044107.
    20. 20)
      • 20. Fillery, S.P., Koerner, H., Drummy, L., et al: ‘Nanolaminates: increasing dielectric breakdown strength of composites’, ACS Appl. Mater. Interfaces, 2012, 4, (3), pp. 13881396.
    21. 21)
      • 21. Ding, S., Yu, S., Zhu, X., et al: ‘Enhanced breakdown strength of polymer composites by low filler loading and its mechanisms’, Appl. Phys. Lett., 2017, 111, (15), p. 153902.
    22. 22)
      • 22. Woong Lee, K., Siva Kumar, K., Heo, G., et al: ‘Characterization of hollow BaTiO3 nanofibers and intense visible photoluminescence’, J. Appl. Phys., 2013, 114, (13), p. 134303.
    23. 23)
      • 23. Freeman, C.L., Dawson, J.A., Chen, H.-R., et al: ‘A new potential model for barium titanate and its implications for rare-earth doping’, J. Mater. Chem., 2011, 21, (13), p. 4861.
    24. 24)
      • 24. Jena, H., Mittal, V.K., Bera, S., et al: ‘X-Ray photoelectron spectroscopic investigations on cubic BaTiO3, BaTi0.9Fe0.1O3 and Ba0.9Nd0.1TiO3 systems’, Appl. Surf. Sci., 2008, 254, (21), pp. 70747079.
    25. 25)
      • 25. Liu, X., Gao, S., Xu, H., et al: ‘Green synthetic approach for Ti3+ self-doped TiO(2−X) nanoparticles with efficient visible light photocatalytic activity’, Nanoscale, 2013, 5, (5), pp. 18701875.
    26. 26)
      • 26. Ehre, D., Cohen, H., Lyahovitskaya, V., et al: ‘X-Ray photoelectron spectroscopy of amorphous and quasiamorphous phases of BaTiO3 and SrTiO3’, Phys. Rev. B, 2008, 77, (18), p. 1841062.
    27. 27)
      • 27. Souza, A.E., Teixeira, S.R., Santos, C.M., et al: ‘Photoluminescence activity of Ba1−XCaxTiO3: dependence on particle size and morphology’, J. Mater. Chem. C, 2014, 2, (34), pp. 70567070.
    28. 28)
      • 28. Chung, U.C., Elissalde, C., Mornet, S., et al: ‘Controlling internal barrier in low loss BaTiO3 supercapacitors’, Appl. Phys. Lett., 2009, 94, (7), p. 072903.
    29. 29)
      • 29. Guillemet-Fritsch, S., Valdez-Nava, Z., Tenailleau, C., et al: ‘Colossal permittivity in ultrafine grain size BaTiO3–X and Ba0.95La0.05TiO3–X materials’, Adv. Mater., 2008, 20, (3), pp. 551555.
    30. 30)
      • 30. Han, H., Voisin, C., Guillemet-Fritsch, S., et al: ‘Origin of colossal permittivity in BaTiO3 Via broadband dielectric spectroscopy’, J. Appl. Phys., 2013, 113, (2), p. 024102.
    31. 31)
      • 31. Cao, W.Q., Xu, L.F., Ismail, M.M., et al: ‘Colossal dielectric constant of NaNbO3 doped BaTiO3 ceramics’, Mater. Sci.-Poland, 2016, 34, (2), pp. 322329.
    32. 32)
      • 32. Iguchi, F., Tsurui, T., Sata, N., et al: ‘The relationship between chemical composition distributions and specific grain boundary conductivity in Y-doped BaZrO3 proton conductors’, Solid State Ion., 2009, 180, (6–8), pp. 563568.
    33. 33)
      • 33. Hennings, D.K., Metzmacher, C., Schreinemacher, B. S.: ‘Defect chemistry and microstructure of hydrothermal barium titanate’, J. Am. Ceram. Soc., 2001, 84, (1), pp. 179182.
    34. 34)
      • 34. Kim, S.-S., Kim, S.-T., Yoon, Y.-C., et al: ‘Magnetic, dielectric, and microwave absorbing properties of iron particles dispersed in rubber matrix in gigahertz frequencies’, J. Appl. Phys., 2005, 97, (10), p. 10F905.
    35. 35)
      • 35. Chen, S.-S., Hu, J., Gao, L., et al: ‘Enhanced breakdown strength and energy density in PVDF nanocomposites with functionalized MgO nanoparticles’, RSC Adv., 2016, 6, (40), pp. 3359933605.
    36. 36)
      • 36. Hao, Y., Wang, X., Bi, K., et al: ‘Significantly enhanced energy storage performance promoted by ultimate sized ferroelectric BaTiO3 fillers in nanocomposite films’, Nano Energy, 2017, 31, pp. 4956.
    37. 37)
      • 37. Xie, Y., Yu, Y., Feng, Y., et al: ‘Fabrication of stretchable nanocomposites with high energy density and low loss from cross-linked PVDF filled with poly(dopamine) encapsulated BaTiO3’, ACS Appl. Mater. Interfaces, 2017, 9, (3), pp. 29953005.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-nde.2018.0015
Loading

Related content

content/journals/10.1049/iet-nde.2018.0015
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address