http://iet.metastore.ingenta.com
1887

access icon openaccess High-energy storage and temperature stable dielectrics properties of lead-free BiScO3–BaTiO3x(Bi0.5Na0.5)TiO3 ceramics

  • PDF
    3.7408714294433594MB
  • XML
    62.32421875Kb
  • HTML
    62.39453125Kb
Loading full text...

Full text loading...

/deliver/fulltext/iet-nde/1/4/IET-NDE.2018.0013.html;jsessionid=mu1jen46h205.x-iet-live-01?itemId=%2fcontent%2fjournals%2f10.1049%2fiet-nde.2018.0013&mimeType=html&fmt=ahah

References

    1. 1)
      • 1. Koruza, J., Bell, A.J., Frömling, T., et al: ‘Requirements for the transfer of lead-free piezoceramics into application’, J. Materiomics, 2018, 4, (1), pp. 1326.
    2. 2)
      • 2. Cheng, R., Wang, C., Xu, Z., et al: ‘High strain in (Bi1/2Na1/2)0.935Ba0.065TiO3–Sr3FeNb2O9 lead-free ceramics with giant piezoresponse’, RSC Adv., 2015, 5, (110), pp. 9050890514.
    3. 3)
      • 3. Chandrasekhar, M., Kumar, P.: ‘Synthesis and characterizations of BNT–BT and BNT–BT–KNN ceramics for actuator and energy storage applications’, Ceram. Int., 2015, 41, (4), pp. 55745580.
    4. 4)
      • 4. Chaouchi, A., Kennour, S., D'Astorg, S., et al: ‘Characterization of sol–gel synthesised lead-free (1 − x)Na0.5Bi0.5TiO3xBaTiO3-based ceramics’, J. Alloys Compd., 2011, 509, (37), pp. 91389143.
    5. 5)
      • 5. Wu, L., Wang, X., Li, L.: ‘Core–shell BaTiO3@BiScO3 particles for local graded dielectric ceramics with enhanced temperature stability and energy storage capability’, J. Alloys Compd., 2016, 688, pp. 113121.
    6. 6)
      • 6. Lim, J.B., Zhang, S., Kim, N., et al: ‘High-temperature dielectrics in the BiScO3−BaTiO3−(K1/2Bi1/2)TiO3 ternary system’, J. Am. Ceram. Soc., 2010, 92, (3), pp. 679682.
    7. 7)
      • 7. Chauhan, A., Patel, S., Vaish, R.: ‘Mechanical confinement for improved energy storage density in BNT–BT–KNN lead-free ceramic capacitors’, AIP Adv., 2014, 4, (8), p. 37.
    8. 8)
      • 8. Li, Q., Wang, J., Ma, Y., et al: ‘Enhanced energy-storage performance and dielectric characterization of 0.94Bi0.5Na0.5TiO3–0.06BaTiO3 modified by CaZrO3’, J. Alloys Compd., 2016, 663, pp. 01707.
    9. 9)
      • 9. Cao, W., Li, W., Zhang, T., et al: ‘High-energy storage density and efficiency of (1 − x)[0.94NBT–0.06BT]–xST lead-free ceramics’, Energy Technol., 2016, 3, (12), pp. 1981204.
    10. 10)
      • 10. Li, F., Liu, Y., Lyu, Y., et al: ‘Huge strain and energy storage density of A-site La3+ donor doped (Bi0.5Na0.5)0.94Ba0.06TiO3 ceramics’, Ceram. Int., 2017, 43, (1), pp. 106110.
    11. 11)
      • 11. Pu, Y., Yao, M., Zhang, L., et al: ‘High energy storage density of 0.55Bi0.5Na0.5TiO3−0.45Ba0.85Ca0.15Ti0.9−xZr0.1SnxO3 ceramics’, J. Alloys Compd., 2016, 687, pp. 689695.
    12. 12)
      • 12. Lu, X., Xu, J., Yang, L., et al: ‘Energy storage properties of (Bi0.5Na0.5)0.93Ba0.07TiO3 lead-free ceramics modified by La and Zr co-doping’, J. Materiomics, 2016, 2, (1), pp. 8793.
    13. 13)
      • 13. Zhao, Y., Xu, J., Zhou, C., et al: ‘High energy storage properties and dielectric behavior of (Bi0.5Na0.5)0.94Ba0.06Ti1−x(Al0.5Nb0.5)xO3 lead-free ferroelectric ceramic’, Ceram. Int., 2016, 42, (2), pp. 22212226.
    14. 14)
      • 14. Zhou, C., Li, Q., Xu, J., et al: ‘Ferroelectric-quasiferroelectric-ergodic relaxor transition and multifunctional electrical properties in Bi0.5Na0.5TiO3-based ceramics’, J. Am. Ceram. Soc., 2018, 101, (4), pp. 15541565.
    15. 15)
      • 15. Ogihara, H., Randall, C.A., Trolier-Mckinstry, S.: ‘Weakly coupled relaxor behavior of BaTiO3–BiScO3 ceramics’, J. Am. Ceram. Soc., 2010, 92, (1), pp. 110118.
    16. 16)
      • 16. Ogihara, H., Randall, C.A., Trolier-Mckinstry, S., et al: ‘High-energy density capacitors utilizing 0.7BaTiO3–0.3BiScO3 ceramics’, J. Am. Ceram. Soc., 2010, 92, (8), pp. 17191724.
    17. 17)
      • 17. Tinberg, D.S., Trolier-Mckinstry, S.: ‘Structural and electrical characterization of xBiScO3−(1 − x)BaTiO3 thin films’, J. Appl. Phys., 2007, 101, (2), p. 340.
    18. 18)
      • 18. Gerson, R., Marshall, T.C.: ‘Dielectric breakdown of porous ceramics’, J. Appl. Phys., 1959, 30, (11), pp. 16501653.
    19. 19)
      • 19. Moulson, A.J., Herbert, J.M.: ‘Electroceramics: materials, properties, applications’ (John Wiley & Sons Press, NJ, 2006, 2nd edn.).
    20. 20)
      • 20. Hu, Q, Jin, L., Wang, T., et al: ‘Dielectric and temperature stable energy storage properties of 0.88BaTiO3–0.12Bi(Mg1/2Ti1/2)O3 bulk ceramics’, J. Alloys Compd., 2015, 640, pp. 416420.
    21. 21)
      • 21. Yu, Z., Liu, Y., Shen, M., et al: ‘Enhanced energy storage properties of BiAlO3 modified Bi0.5Na0.5TiO3–Bi0.5K0.5TiO3 lead-free antiferroelectric ceramics’, Ceram. Int., 2017, 43, (10), pp. 76537659.
    22. 22)
      • 22. Yang, H., Fei, Y., Ying, L., et al: ‘High energy storage density over a broad temperature range in sodium bismuth titanate-based lead-free ceramics’, Sci. Rep., 2017, 7, (1), p. 8726.
    23. 23)
      • 23. Stringer, C.J., Rall, C.A.: ‘In situ TEM investigations of the high-temperature relaxor ferroelectric BiScO3–Pb(Mg1/3Nb2/3)O3-PbTiO3 ternary solid solution’, J. Am. Ceram. Soc., 2007, 90, pp. 18021807.
    24. 24)
      • 24. Lim, J.B., Zhang, S., Shrout, T.R.: ‘High temperature capacitors using a BiScO3–BaTiO3–(K1/2Bi1/2)TiO3 ternary system’, Electron. Mater. Lett., 2011, 7, (1), pp. 7175.
    25. 25)
      • 25. Raengthon, N., Sebastian, T., Cumming, D., et al: ‘BaTiO3–Bi(Zn1/2Ti1/2)O3–BiScO3 ceramics for high-temperature capacitor applications’, J. Am. Ceram. Soc., 2012, 95, (11), pp. 35543561.
    26. 26)
      • 26. Schmid, V.H., Tuthill, G.F., Tu, C.S., et al: ‘Conductivity across random barrier distribution as origin of large low-frequency dielectric peak in perovskite crystals and ceramics’, J. Phys. Chem. Solids, 1996, 57, (10), pp. 14931497.
    27. 27)
      • 27. Bokov, A.A., Ye, Z.G.: ‘Recent progress in relaxor ferroelectrics with perovskite structure’, J. Mater. Sci., 2016, 41, (1), pp. 3152.
    28. 28)
      • 28. Cross, L.E.: ‘Relaxor ferroelectrics’, Ferroelectrics, 2008, 76, (1), pp. 241267.
    29. 29)
      • 29. Sumang, R., Cann, D.P., Kumar, N., et al: ‘Large strain in lead-free piezoelectric (1–xy)Bi0.5Na0.5TiO3xBi0.5K0.5TiO3yBi0.5Li0.5TiO3 system near MPB prepared via the combustion technique’, Ceram. Int., 2015, 41, pp. S127S135.
    30. 30)
      • 30. Jaitanong, N., Vittayakorn, W.C., Chaipanich, A.: ‘Phase development and dielectric responses in PMN–BNT ceramics’, Ceram. Int., 2010, 36, (4), pp. 14791483.
    31. 31)
      • 31. Peng, F., Xu, Z., Chu, R., et al: ‘Structure and electrical properties of (Bi0.5Na0.5)0.94Ba0.06TiO3–Bi0.5(Na0.82K0.18)0.5TiO3–BiAlO3 lead-free piezoelectric ceramics’, Mater. Chem. Phys., 2013, 138, (1), pp. 140145.
    32. 32)
      • 32. Yao, Z., Liu, H., Liu, Y., et al: ‘Phase evolution and ferroelectric behavior in BaTiO3–BiScO3–PbTiO3 ceramics’, J. Ceram. Soc. Jpn., 2008, 116, (1358), pp. 11501153.
    33. 33)
      • 33. Liu, G., Fan, H., Dong, G., et al: ‘Enhanced energy storage and dielectric properties of Bi0.487Na0.427K0.06Ba0.026TiO3xCeO2 anti-ferroelectric ceramics’, J. Alloys Compd., 2016, 664, pp. 632638.
    34. 34)
      • 34. Mohapatra, S.R., Sahu, B., Chandrasekhar, M., et al: ‘Effect of cobalt substitution on structural, impedance, ferroelectric and magnetic properties of multiferroic Bi2Fe4O9 ceramics’, Ceram. Int., 2016, 42, (10), pp. 1235212360.
    35. 35)
      • 35. Das, S.N., Pattanaik, A., Kadambini, S., et al: ‘Dielectric and impedance spectroscopy of Ni doped BiFeO3–BaTiO3 electronic system’, J. Mater. Sci., Mater. Electron., 2016, 27, (10), pp. 17.
    36. 36)
      • 36. Rafiq, M.A., Rasheed, M., Muhammad, Q.K., et al: ‘Structural and high temperature conduction studies of (Na0.46Bi0.46Ba0.08)(MnxTi1−xO3) + CuO lead-free piezoelectric ceramics’, J. Mater. Sci., Mater. Electron., 2017, 28, (20), pp. 1500915020.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-nde.2018.0013
Loading

Related content

content/journals/10.1049/iet-nde.2018.0013
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address