http://iet.metastore.ingenta.com
1887

access icon openaccess Enhancing discharged energy density and suppressing dielectric loss of poly(vinylidene fluoride-ter-trifluoroethylene-ter-chlorofluoroethylene) by a sandwiched structure

  • HTML
    56.9111328125Kb
  • XML
    56.5966796875Kb
  • PDF
    5.7626495361328125MB
Loading full text...

Full text loading...

/deliver/fulltext/iet-nde/1/4/IET-NDE.2018.0011.html;jsessionid=1iqwa86nl5omp.x-iet-live-01?itemId=%2fcontent%2fjournals%2f10.1049%2fiet-nde.2018.0011&mimeType=html&fmt=ahah

References

    1. 1)
      • 1. Muralidharan, N., Brock, C. N., Cohn, A. P., et al: ‘Tunable mechanochemistry of lithium battery electrodes’, ACS Nano, 2017, 11, pp. 62436251.
    2. 2)
      • 2. Liu, Y., Zhang, A., Shen, C., et al: ‘Red phosphorus nanodots on reduced graphene oxide as a flexible and ultra-fast anode for sodium-ion batteries’, ACS Nano, 2017, 11, pp. 55305537.
    3. 3)
      • 3. Kan, W. H., Samson, A. J., Thangadurai, V.: ‘Trends in electrode development for next generation solid oxide fuel cells’, J. Mater. Chem. A, 2016, 4, pp. 1791317932.
    4. 4)
      • 4. Li, M., Chen, K., Hua, B., et al: ‘Smart utilization of cobaltite-based double perovskite cathodes on barrier-layer-free zirconia electrolyte of solid oxide fuel cells’, J. Mater. Chem. A, 2016, 4, pp. 1901919025.
    5. 5)
      • 5. Pan, Z., Liu, M., Yang, J., et al: ‘High electroactive material loading on a carbon [email protected] graphene aerogel for high-performance flexible all-solid-state asymmetric supercapacitors’, Adv. Funct. Mater., 2017, 27, p. 1701122-1/9.
    6. 6)
      • 6. Li, W.-H., Ding, K., Tian, H.-R., et al: ‘Conductive metal–organic framework nanowire array electrodes for high-performance solid-state supercapacitors’, Adv. Funct. Mater., 2017, 27, p. 1702067-1/7.
    7. 7)
      • 7. Huang, X., Jiang, P.: ‘Core-shell structured high-k polymer nanocomposites for energy storage and dielectric applications’, Adv. Mater., 2015, 27, pp. 546554.
    8. 8)
      • 8. Wang, G., Huang, X., Jiang, P.: ‘Tailoring dielectric properties and energy density of ferroelectric polymer nanocomposites by high-k nanowires’, ACS Appl. Mater. Interfaces, 2015, 7, pp. 1801718027.
    9. 9)
      • 9. Wang, G., Huang, X., Jiang, P.: ‘Bio-inspired fluoro-polydopamine meets barium titanate nanowires: a perfect combination to enhance energy storage capability of polymer nanocomposites’, ACS Appl. Mater. Interfaces, 2017, 9, pp. 75477555.
    10. 10)
      • 10. Li, Q., Liu, F., Yang, T., et al: ‘Sandwich-structured polymer nanocomposites with high energy density and great charge-discharge efficiency at elevated temperatures’, Proc. Natl. Acad. Sci. USA, 2016, 113, pp. 999510000.
    11. 11)
      • 11. Li, Q., Chen, L., Gadinski, M. R., et al: ‘Flexible high-temperature dielectric materials from polymer nanocomposites’, Nature, 2015, 523, pp. 576579.
    12. 12)
      • 12. Zhang, G., Li, Y., Tang, S., et al: ‘The role of field electron emission in polypropylene/aluminum nanodielectrics under high electric fields’, ACS Appl. Mater. Interfaces, 2017, 9, pp. 1010610119.
    13. 13)
      • 13. Wang, Q., Zhu, L.: ‘Polymer nanocomposites for electrical energy storage’, J. Polym. Sci., B, Polym. Phys., 2011, 49, pp. 14211429.
    14. 14)
      • 14. Zhu, L., Wang, Q.: ‘Novel ferroelectric polymers for high energy density and low loss dielectrics’, Macromolecules, 2012, 45, pp. 29372954.
    15. 15)
      • 15. Starkweather, H. W., Avakian, P., Matheson, R. R., et al: ‘Ultralow temperature dielectric relaxations in polyolefins’, Macromolecules, 1992, 25, pp. 68716875.
    16. 16)
      • 16. Li, W., Meng, Q., Zheng, Y., et al: ‘Electric energy storage properties of poly(vinylidene fluoride)’, Appl. Phys. Lett., 2010, 96, p. 192905-1/3.
    17. 17)
      • 17. Su, R., Tseng, J.-K., Lu, M.-S., et al: ‘Ferroelectric behavior in the high temperature paraelectric phase in a poly(vinylidene fluoride-co-trifluoroethylene) random copolymer’, Polymer, 2012, 53, pp. 728739.
    18. 18)
      • 18. Lu, S. G., Rožič, B., Zhang, Q. M., et al: ‘Enhanced electrocaloric effect in ferroelectric poly(vinylidene-fluoride/trifluoroethylene) 55/45 mol% copolymer at ferroelectric-paraelectric transition’, Appl. Phys. Lett., 2011, 98, p. 122906-1/3.
    19. 19)
      • 19. Zhou, X., Chu, B., Neese, B., et al: ‘Electrical energy density and discharge characteristics of a poly(vinylidene fluoride-chlorotrifluoroethylene)copolymer’, IEEE Trans. Dielectr. Electr. Insul., 2007, 14, pp. 11331138.
    20. 20)
      • 20. Chu, B. J., Zhou, X., Ren, K. L., et al: ‘A dielectric polymer with high electric energy density and fast discharge speed’, Science, 2006, 313, pp. 334336.
    21. 21)
      • 21. Li, Z., Wang, Y., Cheng, Z. Y.: ‘Electromechanical properties of poly(vinylidene-fluoride-chlorotrifluoroethylene) copolymer’, Appl. Phys. Lett., 2006, 88, p. 062904-1/3.
    22. 22)
      • 22. Zhou, X., Zhao, X., Suo, Z., et al: ‘Electrical breakdown and ultrahigh electrical energy density in poly(vinylidene fluoride-hexafluoropropylene) copolymer’, Appl. Phys. Lett., 2009, 94, p. 162901-1/3.
    23. 23)
      • 23. Guan, F., Wang, J., Pan, J., et al: ‘Effects of polymorphism and crystallite size on dipole reorientation in poly(vinylidene fluoride) and Its random copolymers’, Macromolecules, 2010, 43, pp. 67396748.
    24. 24)
      • 24. Neese, B., Lu, S. G., Chu, B., et al: ‘Electrocaloric effect of the relaxor ferroelectric poly(vinylidene fluoride-trifluoroethylene-chlorofluoroethylene) terpolymer’, Appl. Phys. Lett., 2009, 94, p. 042910-1/3.
    25. 25)
      • 25. Zhang, Z., Meng, Q., Chung, T. C. M.: ‘Energy storage study of ferroelectric poly(vinylidene fluoride-trifluoroethylene-chlorotrifluoroethylene) terpolymers’, Polymer, 2009, 50, pp. 707715.
    26. 26)
      • 26. Li, Q., Zhang, G., Liu, F., et al: ‘Solution-processed ferroelectric terpolymer nanocomposites with high breakdown strength and energy density utilizing boron nitride nanosheets’, Energy Environ. Sci., 2015, 8, pp. 922931.
    27. 27)
      • 27. Xia, F., Cheng, Z., Xu, H., et al: ‘High electromechanical responses in a poly(vinylidene fluoride-trifluoroethylene-chlorofluoroethylene) terpolymer’, Adv. Mater., 2002, 14, pp. 15741577.
    28. 28)
      • 28. Zhao, X., Liu, W., Jiang, X., et al: ‘Exploring the relationship of dielectric relaxation behavior and discharge efficiency of P(VDF-HFP)/PMMA blends by dielectric spectroscopy’, Mater. Res. Express, 2016, 3, pp. 075304/1075304/11.
    29. 29)
      • 29. Liu, F., Li, Q., Cui, J., et al: ‘High-energy-density dielectric polymer nanocomposites with trilayered architecture’, Adv. Funct. Mater., 2017, 27, p. 1606292-1/7.
    30. 30)
      • 30. Zhu, L.: ‘Exploring strategies for high dielectric constant and low loss polymer dielectrics’, J. Phys. Chem. Lett., 2014, 5, pp. 36773687.
    31. 31)
      • 31. Baer, E., Zhu, L.: ‘50th anniversary perspective: dielectric phenomena in polymers and multilayered dielectric films’, Macromolecules, 2017, 50, pp. 22392256.
    32. 32)
      • 32. Shen, Y., Shen, D., Zhang, X., et al: ‘High energy density of polymer nanocomposites at low electric field induced by modulation of topological-structure’, J. Mater. Chem. A, 2016, 4, pp. 83598365.
    33. 33)
      • 33. Wang, Y., Wang, L., Yuan, Q., et al: ‘Ultrahigh electric displacement and energy density in gradient layer-structured BaTiO3/PVDF nanocomposites with an interfacial barrier effect’, J. Mater. Chem. A, 2017, 5, pp. 1084910855.
    34. 34)
      • 34. Wang, Y., Cui, J., Yuan, Q., et al: ‘Significantly enhanced breakdown strength and energy density in sandwich-structured barium titanate/poly(vinylidene fluoride) nanocomposites’, Adv. Mater., 2015, 27, pp. 66586663.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-nde.2018.0011
Loading

Related content

content/journals/10.1049/iet-nde.2018.0011
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address