http://iet.metastore.ingenta.com
1887

access icon openaccess Dielectric materials for high-temperature capacitors

  • PDF
    2.2950878143310547MB
  • XML
    157.33984375Kb
  • HTML
    142.416015625Kb
Loading full text...

Full text loading...

/deliver/fulltext/iet-nde/1/1/IET-NDE.2018.0002.html;jsessionid=14nnsu4cm6o1t.x-iet-live-01?itemId=%2fcontent%2fjournals%2f10.1049%2fiet-nde.2018.0002&mimeType=html&fmt=ahah

References

    1. 1)
      • 1. Weimer, J.A.: ‘Electrical power technology for the more electric aircraft’. AIAA/IEEE Digital Avionics Systems Conf., Fort Worth, TX, USA, October 1993, pp. 445450.
    2. 2)
      • 2. Sarjeant, W.J., Zirnheld, J., MacDougall, F.W.: ‘Capacitors’, IEEE Trans. Plasma Sci., 1998, 26, (5), pp. 13681392.
    3. 3)
      • 3. Johnson, R.W., Evans, J.L., Jacobsen, P., et al: ‘The changing automotive environment: high-temperature electronics’, IEEE Trans. Electron. Packag. Manuf., 2004, 27, (3), pp. 164176.
    4. 4)
      • 4. Watson, J., Gustavo, C.: ‘High-temperature electronics pose design and reliability challenges’, Analog Dialogue, 2012, 46, (2), pp. 39.
    5. 5)
      • 5. Zhang, X.M., Liu, J.G., Yang, S.Y.: ‘A review on recent progress of R&D for high-temperature resistant polymer dielectrics and their applications in electrical and electronic insulation’, Rev. Adv. Mater. Sci., 2016, 46, (1), pp. 2238.
    6. 6)
      • 6. Lin, X., Salari, M., Arava, L.M.R., et al: ‘High temperature electrical energy storage: advances, challenges, and frontiers’, Chem. Soc. Rev., 2016, 45, (21), pp. 58485887.
    7. 7)
      • 7. Randall, C.A., Ogihara, H., Kim, J.R., et al: ‘High temperature and high energy density dielectric materials’. IEEE Pulsed Power Conf., Washington, DC, USA, July 2009, pp. 346351.
    8. 8)
      • 8. Fletcher, N.H., Hilton, A.D., Ricketts, B.W.: ‘Optimization of energy storage density in ceramic capacitors’, J. Phys. D., Appl. Phys., 1996, 29, pp. 253258.
    9. 9)
      • 9. Hao, X.: ‘A review on the dielectric materials for high energy-storage application’, J. Adv. Dielectr., 2013, 3, (1), p. 1330001.
    10. 10)
      • 10. Yao, Z., Song, Z., Hao, H., et al: ‘Homogeneous/inhomogeneous-structured dielectrics and their energy-storage performances’, Adv. Mater., 2017, 29, (20), p. 1601727.
    11. 11)
      • 11. Chen, Q., Shen, Y., Zhang, S., et al: ‘Polymer-based dielectrics with high energy storage density’, Annu. Rev. Mater. Res., 2015, 45, (1), pp. 433458.
    12. 12)
      • 12. Li, Q., Zhang, G., Liu, F., et al: ‘Solution-processed ferroelectric terpolymer nanocomposites with high breakdown strength and energy density utilizing boron nitride nanosheets’, Energy Environ. Sci., 2015, 8, (3), pp. 922931.
    13. 13)
      • 13. Gadinski, M.R., Han, K., Li, Q., et al: ‘High energy density and breakdown strength from β and γ phases in poly(vinylidene fluoride-co-bromotrifluoroethylene) copolymers’, ACS Appl. Mater. Interfaces, 2014, 6, (21), pp. 1898118988.
    14. 14)
      • 14. Ho, J., Jow, T.R.: ‘High field conduction in heat resistant polymers at elevated temperature for metallized film capacitors’. 2012 IEEE Int. Power Modulator High Voltage Conf. (IPMHVC), San Diego, CA, USA, June 2012, pp. 399402.
    15. 15)
      • 15. Wang, D.H., Kurish, B.A., Treufeld, I., et al: ‘Synthesis and characterization of high nitrile content polyimides as dielectric films for electrical energy storage’, J. Polym. Sci. A Polym. Chem., 2015, 53, (3), pp. 422436.
    16. 16)
      • 16. Tan, D., Zhang, L., Chen, Q., et al: ‘High-temperature capacitor polymer films’, J. Electron. Mater., 2014, 43, (12), pp. 45694575.
    17. 17)
      • 17. Nazar, L.F., Patey, T.J., Schlegel, C., et al: ‘Glass as dielectric for high temperature power capacitors’. Materials Research Society Symp. Proc., Cambridge, England, 2014, 1679, pp. 16.
    18. 18)
      • 18. Laghari, J.R., Sarjeant, W.J.: ‘Energy-storage pulsed-power capacitor technology’, IEEE Trans. Power Electron., 1992, 7, (1), pp. 251257.
    19. 19)
      • 19. Chu, B.: ‘A dielectric polymer with high electric energy density and fast discharge speed’, Science, 2006, 313, (5785), pp. 334336.
    20. 20)
      • 20. Tan, Q., Irwin, P., Cao, Y.: ‘Advanced dielectrics for capacitors’, IEEJ Trans. Fundam. Mater., 2006, 126, (11), pp. 11531159.
    21. 21)
      • 21. Li, Q., Chen, L., Gadinski, M.R., et al: ‘Flexible high-temperature dielectric materials from polymer nanocomposites’, Nature, 2015, 523, (7562), pp. 576579.
    22. 22)
      • 22. Kim, P., Jones, S.C., Hotchkiss, P.J., et al: ‘Phosphonic acid-modified barium titanate polymer nanocomposites with high permittivity and dielectric strength’, Adv. Mater., 2007, 19, (7), pp. 10011005.
    23. 23)
      • 23. Rabuffi, M., Picci, G.: ‘Status quo and future prospects for metallized polypropylene energy storage capacitors’, IEEE Pulsed Power Plasma Sci., 2002, 30, (5), pp. 19391942.
    24. 24)
      • 24. Zhang, S., Xia, R., Shrout, T.R.: ‘Modified (K0.5Na0.5)NbO3 based lead-free piezoelectrics with broad temperature usage range’, Appl. Phys. Lett., 2007, 91, (13), pp. 20052008.
    25. 25)
      • 25. Zhang, G., Liu, S., Yu, Y., et al: ‘Microstructure and electrical properties of (Pb0.87Ba0.1La0.02)(Zr0.68Sn0.24Ti0.08)O3 anti-ferroelectric ceramics fabricated by the hot-press sintering method’, J. Eur. Ceram. Soc., 2013, 33, (1), pp. 113121.
    26. 26)
      • 26. Jiang, S., Zhu, Z., Zhang, L., et al: ‘Electrical properties of Bi(Ni1/2Ti1/2)O3–PbTiO3 high-TC piezoelectric ceramics fabricated by the microwave sintering process’, Mater. Sci. Eng. B, 2014, 179, pp. 3640.
    27. 27)
      • 27. Fredin, L.A., Li, Z., Ratner, M.A., et al: ‘Enhanced energy storage and suppressed dielectric loss in oxide core-shell-polyolefin nanocomposites by moderating internal surface area and increasing shell thickness’, Adv. Mater., 2012, 24, (44), pp. 59465953.
    28. 28)
      • 28. Jiang, S., Zhang, L., Zhang, G., et al: ‘Effect of Zr:Sn ratio in the lead lanthanum zirconate stannate titanate anti-ferroelectric ceramics on energy storage properties’, Ceram. Int., 2013, 39, (5), pp. 55715575.
    29. 29)
      • 29. Song, Z., Liu, H., Hao, H., et al: ‘The effect of grain boundary on the energy storage properties of (Ba0.4Sr0.6M)TiO3 paraelectric ceramics by varying grain sizes’, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 2015, 62, (4), pp. 609616.
    30. 30)
      • 30. Zhang, G., Li, Q., Gu, H., et al: ‘Ferroelectric polymer nanocomposites for room-temperature electrocaloric refrigeration’, Adv. Mater., 2015, 27, (8), pp. 14501454.
    31. 31)
      • 31. Li, Q., Zhang, G., Zhang, X., et al: ‘Relaxor ferroelectric-based electrocaloric polymer nanocomposites with a broad operating temperature range and high cooling energy’, Adv. Mater., 2015, 27, (13), pp. 22362241.
    32. 32)
      • 32. Olsen, R.B., Evans, D.: ‘Pyroelectric energy conversion: hysteresis loss and temperature sensitivity of a ferroelectric material’, J. Appl. Phys., 1983, 54, (10), pp. 59415944.
    33. 33)
      • 33. Cross, L.E.: ‘Relaxor ferroelectrics: an overview’, Ferroelectrics, 1994, 151, (1), pp. 305320.
    34. 34)
      • 34. Jin, L., Li, F., Zhang, S.: ‘Decoding the fingerprint of ferroelectric loops: comprehension of the material properties and structures’, J. Am. Ceram. Soc., 2014, 97, (1), pp. 127.
    35. 35)
      • 35. Zhai, J., Li, X., Chen, H.: ‘Effect of the orientation on the ferroelectric-antiferroelectric behavior of sol–gel deposited (Pb,Nb)(Zr,Sn,Ti)O3 thin films’, Thin Solid Films, 2004, 446, (2), pp. 200204.
    36. 36)
      • 36. Zhang, G., Zhu, D., Zhang, X., et al: ‘High-energy storage performance of (Pb0.87Ba0.1La0.02)(Zr0.68Sn0.24Ti0.08)O3 antiferroelectric ceramics fabricated by the hot-press sintering method’, J. Am. Ceram. Soc., 2015, 98, (4), pp. 11751181.
    37. 37)
      • 37. Zhang, H., Chen, X., Cao, F., et al: ‘Charge–discharge properties of an antiferroelectric ceramics capacitor under different electric fields’, J. Am. Ceram. Soc., 2010, 93, (12), pp. 40154017.
    38. 38)
      • 38. Zhang, L., Jiang, S., Zeng, Y., et al: ‘Y doping and grain size co-effects on the electrical energy storage performance of (Pb0.87Ba0.1La0.02) (Zr0.65Sn0.3Ti0.05)O3 anti-ferroelectric ceramics’, Ceram. Int., 2014, 40, (4), pp. 54555460.
    39. 39)
      • 39. Zhang, L., Jiang, S., Fan, B., et al: ‘Enhanced energy storage performance in (Pb0.858Ba0.1La0.02Y0.008) (Zr0.65Sn0.3 Ti0.05)O3-(Pb0.97La0.02)(Zr0.9Sn0.05Ti0.05)O3 anti-ferroelectric composite ceramics by spark plasma sintering’, J. Alloys Compd., 2015, 622, (15), pp. 162165.
    40. 40)
      • 40. Whittingham, M.S.: ‘Materials challenges facing electrical energy storage’, Harnessing Mater. Energy, 2008, 33, (4), pp. 411419.
    41. 41)
      • 41. Prateek Thakur, V.K., Gupta, R.K.: ‘Recent progress on ferroelectric polymer-based nanocomposites for high energy density capacitors: synthesis, dielectric properties, and future aspects’, Chem. Rev., 2016, 116, (7), pp. 42604317.
    42. 42)
      • 42. Lee, H., Smith, N.J., Pantano, C.G., et al: ‘Dielectric breakdown of thinned BaO–Al2O3–B2O3–SiO2 glass’, J. Am. Ceram. Soc., 2010, 93, (8), pp. 23462351.
    43. 43)
      • 43. Smith, N.J., Rangarajan, B., Lanagan, M.T., et al: ‘Alkali-free glass as a high energy density dielectric material’, Mater. Lett., 2009, 63, (15), pp. 12451248.
    44. 44)
      • 44. Manoharan, M.P., Zou, C., Furman, E., et al: ‘Flexible glass for high temperature energy storage capacitors’, Energy Technol., 2013, 1, (5–6), pp. 313318.
    45. 45)
      • 45. McPherson, J., Kim, J.Y., Shanware, A., et al: ‘Thermochemical description of dielectric breakdown in high dielectric constant materials’, Appl. Phys. Lett., 2003, 82, (13), pp. 21212123.
    46. 46)
      • 46. Sun, K.H.: ‘Fundamental condition of glass formation’, J. Am. Ceram. Soc., 1947, 30, (9), pp. 277281.
    47. 47)
      • 47. Zeng, Y., Qin, X., Jiang, S., et al: ‘Effect of BaF2 addition on crystallization kinetics and dielectric properties of B2O3–Nb2O5–SrO–BaO glass-ceramics’, J. Am. Ceram. Soc., 2011, 94, (2), pp. 469473.
    48. 48)
      • 48. Gao, J., Kwon, D.K., Perini, S., et al: ‘Glass dielectrics in extreme high-temperature environment’, J. Am. Ceram. Soc., 2016, 99, (12), pp. 40454049.
    49. 49)
      • 49. Xu, X., Magee, J., Hoskins, A., et al: ‘Robust class-I dielectric for high temperature applications’. Proc. 29th Symp. Passive Comp (CARTS USA), Jacksonville, USA, 2009, pp. 114.
    50. 50)
      • 50. Xu, X., Gurav, A.S., Lessner, P.M., et al: ‘Robust BME class-I MLCCs for harsh-environment applications’, IEEE Trans. Ind. Electron., 2011, 58, (7), pp. 26362643.
    51. 51)
      • 51. Shay, D.P., Podraza, N.J., Donnelly, N.J., et al: ‘High energy density, high temperature capacitors utilizing Mn-doped 0.8CaTiO3–0.2CaHfO3 ceramics’, J. Am. Ceram. Soc., 2012, 95, (4), pp. 13481355.
    52. 52)
      • 52. Lee, H., Kim, J.R., Lanagan, M.J., et al: ‘High-energy density dielectrics and capacitors for elevated temperatures: Ca(Zr,Ti)O3’, J. Am. Ceram. Soc., 2013, 96, (4), pp. 12091213.
    53. 53)
      • 53. Ball, C.J., Begg, B.D., Cookson, D.J., et al: ‘Structures in the system CaTiO3/SrTiO3’, J. Solid State Chem., 1998, 139, (2), pp. 238247.
    54. 54)
      • 54. Qin, S., Becerro, A.I., Seifert, F., et al: ‘Phase transitions in Ca1−xSrxTiO3 perovskites: effects of composition and temperature’, J. Mater. Chem., 2000, 10, (7), pp. 16091615.
    55. 55)
      • 55. Howard, C.J., Withers, R.L., Zhang, Z., et al: ‘Space-group symmetry for the perovskite Ca0.3Sr0.7TiO3’, J. Phys. Condens. Matter, 2005, 17, (44), pp. L459L465.
    56. 56)
      • 56. Carpenter, M.A., Howard, C.J., Knight, K.S., et al: ‘Structural relationships and a phase diagram for (Ca,Sr)TiO3 perovskites’, J. Phys. Condens. Matter, 2006, 18, (48), pp. 1072510749.
    57. 57)
      • 57. Zhang, L., Wang, X., Liu, H., et al: ‘Structural and dielectric properties of BaTiO3-CaTiO3–SrTiO3 ternary system ceramics’, J. Am. Ceram. Soc., 2010, 93, (4), pp. 10491055.
    58. 58)
      • 58. Kersch, A., Fischer, D.: ‘Phase stability and dielectric constant of ABO3 perovskites from first principles’, J. Appl. Phys., 2009, 106, (1), p. 014105.
    59. 59)
      • 59. Zhang, L., Hao, H., Liu, H., et al: ‘Effect of HfO2 addition as intergranular grains on the energy storage behavior of Ca0.6Sr0.4TiO3 ceramics’, J. Eur. Ceram. Soc., 2016, 36, (13), pp. 31573163.
    60. 60)
      • 60. Zhang, L., Hao, H., Zhang, S., et al: ‘Defect structure-electrical property relationship in Mn-doped calcium strontium titanate dielectric ceramics’, J. Am. Ceram. Soc., 2017, 100, (10), pp. 46384648.
    61. 61)
      • 61. Dittmer, R., Jo, W., Damjanovic, D., et al: ‘Lead-free high-temperature dielectrics with wide operational range’, J. Appl. Phys., 2011, 109, (3), p. 034107.
    62. 62)
      • 62. Acosta, M., Zang, J., Jo, W., et al: ‘High-temperature dielectrics in CaZrO3-modified Bi1/2Na1/2TiO3-based lead-free ceramics’, J. Eur. Ceram. Soc., 2012, 32, (16), pp. 43274334.
    63. 63)
      • 63. Xu, Q., Song, Z., Tang, W., et al: ‘Ultra-wide temperature stable dielectrics based on Bi0.5Na0.5TiO3–NaNbO3 system’, J. Am. Ceram. Soc., 2015, 98, (10), pp. 31193126.
    64. 64)
      • 64. Chen, P., Chu, B.: ‘Improvement of dielectric and energy storage properties in Bi(Mg1/2Ti1/2)O3-modified (Na1/2Bi1/2)0.92Ba0.08TiO3 ceramics’, J. Eur. Ceram. Soc., 2016, 36, (1), pp. 8188.
    65. 65)
      • 65. Lim, J.B., Zhang, S., Kim, N., et al: ‘High-temperature dielectrics in the BiScO3–BaTiO3–(K1/2Bi1/2) TiO3 ternary system’, J. Am. Ceram. Soc., 2009, 92, (3), pp. 679682.
    66. 66)
      • 66. Beuerlein, M.A., Kumar, N., Usher, T.-M., et al: ‘Current understanding of structure-processing-property relationships in BaTiO3–Bi(M)O3 dielectrics’, J. Am. Ceram. Soc., 2016, 99, (9), pp. 28492870.
    67. 67)
      • 67. Sun, Z., Wang, X., Liu, M., et al: ‘Large energy density, excellent thermal stability, and high cycling endurance of lead-free BaZr0.2Ti0.8O3 film capacitors’, ACS Appl. Mater. Interfaces, 2017, 9, (20), pp. 1709617101.
    68. 68)
      • 68. Wang, X., Zhang, L., Hao, X., et al: ‘Dielectric properties and energy-storage performances of (1−x)Pb(Mg1/3Nb2/3)O3xPbTiO3 relaxor ferroelectric thin films’, J. Mater. Sci. Mater. Electron., 2015, 26, (12), pp. 95839590.
    69. 69)
      • 69. Gao, F., Dong, X., Mao, C., et al: ‘Energy-storage properties of 0.89Bi0.5Na0.5TiO3–0.06BaTiO3–0.05K0.5Na0.5NbO3 lead-free anti-ferroelectric ceramics’, J. Am. Ceram. Soc., 2011, 94, (12), pp. 43824386.
    70. 70)
      • 70. Cao, W., Li, W., Feng, Y., et al: ‘Defect dipole induced large recoverable strain and high energy-storage density in lead-free Na0.5Bi0.5TiO3-based systems’, Appl. Phys. Lett., 2016, 108, (20), pp. 05.
    71. 71)
      • 71. Li, F., Zhai, J., Shen, B., et al: ‘Influence of structural evolution on energy storage properties in Bi0.5Na0.5TiO3–SrTiO3–NaNbO3 lead-free ferroelectric ceramics’, J. Appl. Phys., 2017, 121, (5), p. 54103.
    72. 72)
      • 72. Li, Q., Wang, J., Ma, Y., et al: ‘Enhanced energy-storage performance and dielectric characterization of 0.94Bi0.5Na0.5TiO3–0.06BaTiO3 modified by CaZrO3’, J. Alloys Compd., 2016, 663, (5), pp. 701707.
    73. 73)
      • 73. Zheng, D., Zuo, R.: ‘Enhanced energy storage properties in La(Mg1/2Ti1/2)O3-modified BiFeO3-BaTiO3 lead-free relaxor ferroelectric ceramics within a wide temperature range’, J. Eur. Ceram. Soc., 2017, 37, (1), pp. 413418.
    74. 74)
      • 74. Pan, H., Zeng, Y., Shen, Y., et al: ‘BiFeO3–SrTiO3 thin film as new lead-free relaxor-ferroelectric capacitor with ultrahigh energy storage performance’, J. Mater. Chem. A, 2017, 5, (12), pp. 59205926.
    75. 75)
      • 75. Hao, X., Zhai, J., Kong, L.B., et al: ‘A comprehensive review on the progress of lead zirconate-based antiferroelectric materials’, Prog. Mater. Sci., 2014, 63, pp. 157.
    76. 76)
      • 76. Patel, S., Chauhan, A., Vaish, R.: ‘Enhancing electrical energy storage density in anti-ferroelectric ceramics using ferroelastic domain switching’, Mater. Res. Express, 2014, 1, (4), p. 45502.
    77. 77)
      • 77. Jaffe, B.: ‘Antiferroelectric ceramics with field-enforced transitions: a new nonlinear circuit element’, Proc. IRE, 1961, 49, (8), pp. 12641267.
    78. 78)
      • 78. Bernard, D., Pannetier, J., Lucas, J.: ‘Ferroelectric and antiferroelectric materials with pyrochlore structure’, Ferroelectrics, 1978, 21, (1), pp. 429431.
    79. 79)
      • 79. Subbarao, E.C.: ‘Ferroelectric and antiferroelectric materials’, Ferroelectrics, 1973, 5, (1), pp. 267280.
    80. 80)
      • 80. Cao, W.P., Li, W.L., Dai, X.F., et al: ‘Large electrocaloric response and high energy-storage properties over a broad temperature range in lead-free NBT-ST ceramics’, J. Eur. Ceram. Soc., 2016, 36, (3), pp. 593600.
    81. 81)
      • 81. Zhang, G., Liu, P., Fan, B., et al: ‘Large energy density in Ba doped Pb0.97La0.02(Zr0.65Sn0.3Ti0.05)O3 antiferroelectric ceramics with improved temperature stability’, IEEE Trans. Dielectr. Electr. Insul., 2017, 24, (2), pp. 744748.
    82. 82)
      • 82. Hao, X., Zhai, J., Yao, X.: ‘Improved energy storage performance and fatigue endurance of Sr-doped PbZrO3 antiferroelectric thin films’, J. Am. Ceram. Soc., 2009, 92, (5), pp. 11331135.
    83. 83)
      • 83. Parui, J., Krupanidhi, S.B.: ‘Enhancement of charge and energy storage in sol–gel derived pure and La-modified PbZrO3 thin films’, Appl. Phys. Lett., 2008, 92, (19), p. 192901.
    84. 84)
      • 84. Ye, M., Sun, Q., Chen, X., et al: ‘Effect of Eu doping on the electrical properties and energy storage performance of PbZrO3 antiferroelectric thin films’, J. Am. Ceram. Soc., 2011, 94, (10), pp. 32343236.
    85. 85)
      • 85. Wang, Y., Hao, X., Yang, J., et al: ‘Fabrication and energy-storage performance of (Pb,La)(Zr,Ti)O3 antiferro electric thick films derived from polyvinylpyrrolidone-modified chemical solution’, J. Appl. Phys., 2012, 112, (3), p. 034105.
    86. 86)
      • 86. Ma, B., Kwon, D.-K., Narayanan, M., et al: ‘Dielectric properties and energy storage capability of antiferroelectric Pb0.92La0.08Zr0.95Ti0.05O3 film-on-foil capacitors’, J. Mater. Res., 2009, 24, (9), pp. 29932996.
    87. 87)
      • 87. Khanchaitit, P., Han, K., Gadinski, M.R., et al: ‘Ferroelectric polymer networks with high energy density and improved discharged efficiency for dielectric energy storage’, Nat. Commun., 2013, 4, p. 2845.
    88. 88)
      • 88. Zhu, L., Wang, Q.: ‘Novel ferroelectric polymers for high energy density and low loss dielectrics’, Macromolecules, 2012, 45, (7), pp. 29372954.
    89. 89)
      • 89. Han, K., Li, Q., Chanthad, C., et al: ‘A hybrid material approach toward solution-processable dielectrics exhibiting enhanced breakdown strength and high energy density’, Adv. Funct. Mater., 2015, 25, (23), pp. 35053513.
    90. 90)
      • 90. Pan, J., Li, K., Chuayprakong, S., et al: ‘High-temperature poly(phthalazinone ether ketone) thin films for dielectric energy storage’, ACS Appl. Mater. Interfaces, 2010, 2, (5), pp. 12861289.
    91. 91)
      • 91. Liaw, D.J., Wang, K.L., Huang, Y.C., et al: ‘Advanced polyimide materials: syntheses, physical properties and applications’, Prog. Polym. Sci., 2012, 37, (7), pp. 907974.
    92. 92)
      • 92. Liu, F., Li, Q., Li, Z., et al: ‘Poly(methyl methacrylate)/boron nitride nanocomposites with enhanced energy density as high temperature dielectrics’, Compos. Sci. Technol., 2017, 142, (12), pp. 139144.
    93. 93)
      • 93. Seferis, J.C.: ‘Polyetheretherketone (PEEK): processing-structure and properties studies for a matrix in high-performance composites’, Polym. Compos., 1986, 7, (3), pp. 158169.
    94. 94)
      • 94. Pan, J., Li, K., Li, J., et al: ‘Dielectric characteristics of poly(ether ketone ketone) for high temperature capacitive energy storage’, Appl. Phys. Lett., 2009, 95, (2), p. 022902.
    95. 95)
      • 95. Cheng, Z., Lin, M., Wu, S., et al: ‘Aromatic poly(arylene ether urea) with high dipole moment for high thermal stability and high energy density capacitors’, Appl. Phys. Lett., 2015, 106, (20), p. 202902.
    96. 96)
      • 96. Hayashida, K.: ‘Highly improved dielectric properties of polymer/α-Fe2O3 composites at elevated temperatures’, RSC Adv., 2016, 6, (69), pp. 6487164878.
    97. 97)
      • 97. Venkat, N., Dang, T.D., Bai, Z., et al: ‘High temperature polymer film dielectrics for aerospace power conditioning capacitor applications’, Mater. Sci. Eng. B, 2010, 168, (1), pp. 1621.
    98. 98)
      • 98. Hammoud, A.N., Suthar, J.L.: ‘Characterization of polybenzimidazole (PBI) film at high temperatures’. IEEE Electrical Insulation Magazine, Toronto, ON, Canada, June 1990, pp. 449451.
    99. 99)
      • 99. Li, Q., Wang, Q.: ‘Ferroelectric polymers and their energy-related applications’, Macromol. Chem. Phys., 2016, 217, (11), pp. 12281244.
    100. 100)
      • 100. Fernandes, B.: ‘Perspectives in the development of personality’, J. Med. (Oporto), 1959, 39, (849), pp. 57, passim.
    101. 101)
      • 101. Bauer, F., Fousson, E., Zhang, Q.M.: ‘Recent advances in highly electrostrictive P(VDF–TrFE–CFE) terpolymers’, IEEE Trans. Dielectr. Electr. Insul., 2006, 13, (5), pp. 11491153.
    102. 102)
      • 102. Xie, B., Zhang, Q., Zhang, H., et al: ‘Largely enhanced ferroelectric and energy storage performances of P(VDF–CTFE) nanocomposites at a lower electric field using BaTiO3 nanowires by stirring hydrothermal method’, Ceram. Int., 2016, 42, (16), pp. 1901219018.
    103. 103)
      • 103. Xie, B., Zhang, H., Zhang, Q., et al: ‘Enhanced energy density of polymer nanocomposites at a low electric field through aligned BaTiO3 nanowires’, J. Mater. Chem. A, 2017, 5, (13), pp. 60706078.
    104. 104)
      • 104. Miao, B., Liu, J., Zhang, X., et al: ‘Ferroelectric relaxation dependence of poly(vinylidene fluoride-co-trifluoroethylene) on frequency and temperature after grafting with poly(methyl methacrylate)’, RSC Adv., 2016, 6, (87), pp. 8442684438.
    105. 105)
      • 105. Zhang, X., Zhao, Y., Wu, Y., et al: ‘Poly(tetrafluoro ethylene-hexafluoropropylene) films with high energy density and low loss for high-temperature pulse capacitors’, Polymer, 2017, 114, (7), pp. 311318.
    106. 106)
      • 106. Stricker, J., Scofield, J., Brar, N.: ‘Evaluation of fluorene polyester film capacitors’. CARTS USA-2010, New Orleans, LA, March 2010, pp. 441456.
    107. 107)
      • 107. Rajib, M., Martinez, R., Shuvo, M., et al: ‘Enhanced energy storage of dielectric nanocomposites at elevated temperatures’, Int. J. Appl. Ceram. Technol., 2016, 13, (1), pp. 125132.
    108. 108)
      • 108. Sun, W., Lu, X., Jiang, J., et al: ‘Dielectric and energy storage performances of polyimide/BaTiO3 nanocomposites at elevated temperatures’, J. Appl. Phys., 2017, 121, (24), p. 244101.
    109. 109)
      • 109. Thakur, Y., Zhang, T., Iacob, C., et al: ‘Enhancement of the dielectric response in polymer nanocomposites with low dielectric constant fillers’, Nanoscale, 2017, 9, (31), pp. 1099210997.
    110. 110)
      • 110. Sharma, V., Wang, C., Lorenzini, R.G., et al: ‘Rational design of all organic polymer dielectrics’, Nat. Commun., 2014, 5, p. 4845.
    111. 111)
      • 111. Thakur, Y., Lean, M.H., Zhang, Q.M.: ‘Reducing conduction losses in high energy density polymer using nanocomposites’, Appl. Phys. Lett., 2017, 110, (12), p. 122905.
    112. 112)
      • 112. Pan, C., Kou, K., Jia, Q., et al: ‘Fabrication and characterization of micro-nano AlN co-filled PTFE composites with enhanced thermal conductivity: a morphology-promoted synergistic effect’, J. Mater. Sci. Mater. Electron., 2016, 27, (11), pp. 1190911916.
    113. 113)
      • 113. Song, Y., Shen, Y., Liu, H., et al: ‘Improving the dielectric constants and breakdown strength of polymer composites: effects of the shape of the BaTiO3 nanoinclusions, surface modification and polymer matrix’, J. Mater. Chem., 2012, 22, (32), pp. 1649116498.
    114. 114)
      • 114. Li, Z., Fredin, L.A., Tewari, P., et al: ‘In situ catalytic encapsulation of core-shell nanoparticles having variable shell thickness: dielectric and energy storage properties of high-permittivity metal oxide nanocomposites’, Chem. Mater., 2010, 22, (18), pp. 51545164.
    115. 115)
      • 115. Liu, F., Li, Q., Cui, J., et al: ‘High-energy-density dielectric polymer nanocomposites with trilayered architecture’, Adv. Funct. Mater., 2017, 27, (20), p. 1606292.
    116. 116)
      • 116. Wang, Y., Cui, J., Yuan, Q., et al: ‘Significantly enhanced breakdown strength and energy density in sandwich-structured barium titanate/poly (vinylidene fluoride) nanocomposites’, Adv. Mater., 2015, 27, (42), pp. 66586663.
    117. 117)
      • 117. Hu, P., Shen, Y., Guan, Y., et al: ‘Topological-structure modulated polymer nanocomposites exhibiting highly enhanced dielectric strength and energy density’, Adv. Funct. Mater., 2014, 24, (21), pp. 31723178.
    118. 118)
      • 118. Kim, Y., Kathaperumal, M., Chen, V.W., et al: ‘Bilayer structure with ultrahigh energy/power density using hybrid sol–gel dielectric and charge-blocking monolayer’, Adv. Energy Mater., 2015, 5, (19), p. 1500767.
    119. 119)
      • 119. Wang, Y., Cui, J., Wang, L., et al: ‘Compositional tailoring effect on electric field distribution for significantly enhanced breakdown strength and restrained conductive loss in sandwich-structured ceramic/polymer nanocomposites’, J. Mater. Chem. A, 2017, 5, (9), pp. 47104718.
    120. 120)
      • 120. Wang, Y., Wang, L., Yuan, Q., et al: ‘Ultrahigh electric displacement and energy density in gradient layer-structured BaTiO3/PVDF nanocomposites with an interfacial barrier effect’, J. Mater. Chem. A, 2017, 5, (22), pp. 1084910855.
    121. 121)
      • 121. Li, Q., Liu, F., Yang, T., et al: ‘Sandwich-structured polymer nanocomposites with high energy density and great charge–discharge efficiency at elevated temperatures’, Proc. Natl. Acad. Sci., 2016, 113, (36), pp. 999510000.
    122. 122)
      • 122. Azizi, A., Gadinski, M.R., Li, Q., et al: ‘High-performance polymers sandwiched with chemical vapor deposited hexagonal boron nitrides as scalable high-temperature dielectric materials’, Adv. Mater., 2017, 29, (35), p. 1701864.
    123. 123)
      • 123. Tseng, J.K., Tang, S., Zhou, Z., et al: ‘Interfacial polarization and layer thickness effect on electrical insulation in multilayered polysulfone/poly(vinylidene fluoride) films’, Polymer, 2014, 55, (1), pp. 814.
    124. 124)
      • 124. Yin, K., Zhu, L., Olah, A.: ‘Polymer multilayer films for high temperature dielectric applications’. SPE ANTEC Indianapolis, Indianapolis, USA, 2016, pp. 560563.
    125. 125)
      • 125. Mackey, M., Schuele, D.E., Zhu, L., et al: ‘Reduction of dielectric hysteresis in multilayered films via nanoconfinement’, Macromolecules, 2012, 45, (4), pp. 19541962.
    126. 126)
      • 126. Mackey, M., Hiltner, A., Baer, E., et al: ‘Enhanced breakdown strength of multilayered films fabricated by forced assembly microlayer coextrusion’, J. Phys. D., Appl. Phys., 2009, 42, (17), p. 175304.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-nde.2018.0002
Loading

Related content

content/journals/10.1049/iet-nde.2018.0002
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address