http://iet.metastore.ingenta.com
1887

access icon openaccess PVDF-based dielectric polymers and their applications in electronic materials

  • XML
    197.486328125Kb
  • PDF
    6.860634803771973MB
  • HTML
    181.267578125Kb
Loading full text...

Full text loading...

/deliver/fulltext/iet-nde/1/1/IET-NDE.2018.0001.html;jsessionid=3t59dabke3nkm.x-iet-live-01?itemId=%2fcontent%2fjournals%2f10.1049%2fiet-nde.2018.0001&mimeType=html&fmt=ahah

References

    1. 1)
      • 1. Plunkett, R.F.: Assigned to DuPont Co, U.S. Patent 2,230,654, accessed 4 February 1941.
    2. 2)
      • 2. A.F.Teflon®. Available at http://www2.dupont.com/Teflon_Industrial/en_US/products/product_by_name/teflon_af/, accessed 2010.
    3. 3)
      • 3. Plunkett Roy, J.: ‘The history of polytetra fluoroethylene: discovery and development’, in Kirshenbaum, G. (Ed.): ‘High performance polymers, their origin and development’ (Springer, Netherlands, 1986), pp. 261266.
    4. 4)
      • 4. Martins, P., Lopes, A.C., Lanceros-Mendez, S.: ‘Electroactive phases of poly(vinylidene fluoride): determination, processing and applications’, Prog. Polym. Sci., 2014, 39, (4), pp. 683706.
    5. 5)
      • 5. Mathur, S.C., Scheinbeim, J.I., Newman, B.A.: ‘Piezoelectric properties and ferroelectric hysteresis effects in uniaxially stretched nylon-11 films’, J. Appl. Phys., 1984, 56, (9), pp. 24192425.
    6. 6)
      • 6. Huang, L., Zhuang, X., Hu, J., et al: ‘Synthesis of biodegradable and electroactive multiblock polylactide and aniline pentamer copolymer for tissue engineering applications’, Biomacromolecules, 2008, 9, (3), pp. 850858.
    7. 7)
      • 7. Ebnesajjad, S.: ‘Introduction to fluoropolymers: materials, technology, and applications’ (William Andrews is an Imprint of Elsevier, Waltham, 2013).
    8. 8)
      • 8. Lovinger, A.J.: ‘Ferroelectric polymers’, Science, 1983, 220, (4602), pp. 11151121.
    9. 9)
      • 9. Mohajir, B.E.E., Heymans, N.: ‘Changes in structural and mechanical behaviour of PVDF with processing and thermomechanical treatments.1. Change in structure’, Polymer, 2001, 42, (13), pp. 56615667.
    10. 10)
      • 10. Priya, L., Jog, J.P.: ‘Polymorphism in intercalated poly(vinylidene fluoride)/clay nanocomposites’, J. Appl. Polym. Sci., 2010, 89, (8), pp. 20362040.
    11. 11)
      • 11. Scheirs, J.: ‘Modern fluoropolymers: high performance polymers for diverse applications’, Focus Catalysts, 1997, 2006, (9), p. 8.
    12. 12)
      • 12. Mitchell, G.R., Davis, F.J., Olley, R.H.: ‘Scales of structure in polymers’, in Mitchell, G.R., Tojeira, A. (Eds.): ‘Controlling the morphology of polymers’, vol. 1 (Basel, Switzerland, Springer International Publishing, 2016), pp. 13.
    13. 13)
      • 13. Stevens, M.P.: ‘Polymer chemistry’ (Oxford University Press, New York, 1990).
    14. 14)
      • 14. Zhu, L.: ‘Exploring strategies for high dielectric constant and low loss polymer dielectrics’, J. Phys. Chem. Lett., 2014, 5, (21), pp. 36773687.
    15. 15)
      • 15. Romasanta, L.J., Lopez-Manchado, M.A., Verdejo, R.: ‘Increasing the performance of dielectric elastomer actuators: a review from the materials perspective’, Prog. Polym. Sci., 2015, 51, pp. 188211.
    16. 16)
      • 16. Martins, P., Costa, C.M., Botelho, G., et al: ‘Dielectric and magnetic properties of ferrite/poly(vinylidene fluoride) nanocomposites’, Mater. Chem. Phys., 2012, 131, (3), pp. 698705.
    17. 17)
      • 17. Ford, T.A., Edward, H.W.: ‘Polyvinylidene fluoride and process for obtaining the same’. US, US2435537, 1948.
    18. 18)
      • 18. Ford, T.A.: U.S. Patent2, 468, 054, assigned to DuPont Co, 26 April 1949.
    19. 19)
      • 19. Ebnesajjad, S.: ‘Poly(vinyl fluoride). Kirk-Othmer encyclopedia of chemical technology’ (New York, USA, John Wiley & Sons, Inc., 2001).
    20. 20)
      • 20. Brasure, D.E., Ebnesajjad, S.: ‘Vinyl fluoride polymers’, in Kroschwitz, Jacqueline. I. (Ed.): ‘Encyclopedia of polymer science and engineering’, vol. 17 (John Wiley & Sons, New York, 2nd edn.), pp. 468491.
    21. 21)
      • 21. Lovinger, A.J.: inBassett, G.C. (Ed.): ‘Developments in crystalline polymers’, vol. 1 (Elsevier Applied Science Publishers, Ltd., Barking, UK, 1982), pp. 195273.
    22. 22)
      • 22. Görlitz, V.M., Minke, R., Trautvetter, W., et al: ‘Struktur and eigenschaften von polyvinylfluorid (PVF) und polyvinylidenfluorid (PVF2)’, Angew. Makromol. Chem., 1973, 29, (1), pp. 137162.
    23. 23)
      • 23. Xia, W.M., Xu, Z., Zhang, Z.C.: ‘Dielectric, piezoelectric and ferroelectric properties of a poly(vinylidene fluoride-co-trifluoroethylene) synthesized via a hydrogenation process’, Polymer, 2014, 54, (1), pp. 440446.
    24. 24)
      • 24. Lutringer, G., Weill, G.: ‘Solution properties of poly(vinylidene fluoride): 1. Relation between microgel formation and microstructure’, Polymer, 1991, 32, (5), pp. 877883.
    25. 25)
      • 25. Lutringer, G., Meurer, B., Weill, G.: ‘Solution properties of poly(vinylidene fluoride): 2. Relation between microgel formation and microstructure’, Polymer, 1991, 32, (5), pp. 884891.
    26. 26)
      • 26. Zhu, L., Qing, W.: ‘Novel ferroelectric polymers for high energy density and low loss dielectrics’, Macromolecules, 2012, 45, (7), pp. 29372954.
    27. 27)
      • 27. Weinhold, S., Bachmann, M.A., Litt, M.H., et al: ‘Orthorhombic vs. monoclinic structures for the α and γ phases of poly(vinylidene fluoride): an analysis’, Macromolecules, 1982, 15, (6), pp. 15351538.
    28. 28)
      • 28. Weinhold, S., Litt, M.H., Lando, J.B.: ‘The crystal structure of the alternating copolymer of hexafluoroisobutylene and vinylidene fluoride’, J. Polym. Sci. B Polym. Phys., 1982, 20, (3), pp. 535552.
    29. 29)
      • 29. Weinhold, S., Litt, M.H., Lando, J.B.: ‘The effect of surface nucleation on the crystallization of the α phase of poly(vinylidene fluoride)’, J. Appl. Phys., 1980, 51, (10), pp. 51455155.
    30. 30)
      • 30. Weinhold, S., Litt, M.H., Lando, J.B.: ‘The crystal structure of the γ phase of poly(vinylidene fluoride)’, Macromolecules, 1980, 13, (10), pp. 50955099.
    31. 31)
      • 31. Weinhold, S., Litt, M., Lando, J.B.: ‘The effect of crystallite orientation on the electric field induced α to Î′ crystal phase transition in poly(vinylidene fluoride)’, Ferroelectrics, 1984, 57, (1), pp. 277296.
    32. 32)
      • 32. Dohany, J.E., Humphrey, J.S.: ‘Vinylidene fluoride polymers’, in Matyjaszewski, K. (Ed.): ‘Encyclopedia of polymer science and engineering’, vol. 17 (John Wiley & Sons, New York, 1989, 2nd edn.), pp. 532548.
    33. 33)
      • 33. Hahn, B., Wendorff, J., Yoon, D.Y.: ‘Dielectric relaxation of the crystal-amorphous interphase in poly(vinylidene fluoride) and its blends with poly(methyl methacrylate)’, Macromolecules, 1985, 18, (4), pp. 718721.
    34. 34)
      • 34. Li, W., Meng, Q., Zheng, Y., et al: ‘Electric energy storage properties of poly(vinylidene fluoride)’, Appl. Phys. Lett., 2010, 96, (19), p. 192905.
    35. 35)
      • 35. He, L., Sun, J., Wang, X., et al: ‘Facile and effective promotion of β crystalline phase in poly(vinylidene fluoride) via the incorporation of imidazolium ionic liquids’, Polym. Int., 2013, 62, (4), pp. 638646.
    36. 36)
      • 36. Gregorio, R.: ‘Determination of the α, β, and γ crystalline phases of poly (vinylidene fluoride) films prepared at different conditions’, Appl. Polym. Sci., 2006, 100, pp. 32723279.
    37. 37)
      • 37. Boccaccio, T., Bottino, A., Capannelli, G., et al: ‘Characterization of PVDF membranes by vibrational spectroscopy’, J. Membr. Sci., 2002, 210, (2), pp. 315329.
    38. 38)
      • 38. Bormashenko, Y., Pogreb, R., Stanevsky, O., et al: ‘Vibrational spectrum of PVDF and its interpretation’, Polym. Test., 2004, 23, (7), pp. 791796.
    39. 39)
      • 39. Esterly, D.M., Love, B.J.: ‘Phase transformation to β-poly(vinylidene fluoride) by milling’, J. Polym. Sci. B Polym. Phys., 2004, 42, (1), pp. 9197.
    40. 40)
      • 40. Gregorio, R., Ueno, E.M.: ‘Effect of crystalline phase, orientation and temperature on the dielectric properties of poly(vinylidene fluoride) (PVDF)’, J. Mater. Sci., 1999, 34, (18), pp. 44894500.
    41. 41)
      • 41. KYNAR® & KYNAR FLEX® PVDF, Performance Characteristics & Data, published by Arkema Corp, 2012. Available at http://www.kynar.com.
    42. 42)
      • 42. Li, J.J., Meng, Q.J., Li, W.J., et al: ‘Influence of crystalline properties on the dielectric and energy storage properties of poly(vinylidene fluoride)’, Appl. Polym. Sci., 2011, 122, pp. 16591668.
    43. 43)
      • 43. Shah, D., Maiti, P., Gunn, E., et al: ‘Dramatic enhancements in toughness of polyvinylidene fluoride nanocomposites via nanoclay-directed crystal structure and morphology’, Adv. Mater., 2004, 16, (14), pp. 11731177.
    44. 44)
      • 44. Mandal, D., Kim, K.J., Lee, J.S.: ‘Simple synthesis of palladium nanoparticles, β-phase formation, and the control of chain and dipole orientations in palladium-doped poly(vinylidene fluoride) thin films’, Langmuir Acs J. Surf. Colloids, 2012, 28, (28), pp. 1031010317.
    45. 45)
      • 45. Capsal, J.F., Dantras, E., Lacabanne, C.: ‘Molecular mobility interpretation of the dielectric relaxor behavior in fluorinated copolymers and terpolymers’, Non-Cryst. Solids, 2013, 363, pp. 2025.
    46. 46)
      • 46. Chen, Q., Shen, Y., Zhang, S., et al: ‘Polymer-based dielectrics with high energy storage density’, Annu. Rev. Mater. Res., 2015, 45, (1), pp. 433458.
    47. 47)
      • 47. Neese, B., Wang, Y., Chu, B., et al: ‘Piezoelectric responses in poly(vinylidene flu-oride/hexafluoropropylene) copolymers’, Appl. Phys. Lett., 2007, 90, (24), pp. 14.
    48. 48)
      • 48. Rabuffi, M., Picci, G.: ‘Status quo and future prospects for metallized polypropylene energy storage capacitors’, IEEE Trans. Plasma Sci., 2002, 30, (5), pp. 19391942.
    49. 49)
      • 49. Zhang, X.M., Zhao, Y.F., Wu, Y.H., et al: ‘Poly(tetrafluoroethylene-hexafluoropropylene) films with high energy density and low loss for high-temperature pulse capacitors’, Polymer, 2017, 114, pp. 311318.
    50. 50)
      • 50. Wang, T.T., Takase, Y.: ‘Ferroelectriclike dielectric behavior in the piezoelectric amorphous copolymer of vinylidenecyanide and vinyl acetate’, J. Appl. Phys., 1987, 62, (8), pp. 34663469.
    51. 51)
      • 51. Tasaka, S.: ‘Ferroelectric polymers’ (Marcel Dekker, New York, NY, 1994).
    52. 52)
      • 52. Steeman, P.A.M., Maurer, F.H.J., Turhout, J.V.: ‘Dielectric properties of blends of polycarbonate and acrylonitrile-butadiene-styrene copolymer’, Polym. Eng. Sci., 2004, 34, (9), pp. 697706.
    53. 53)
      • 53. Hundal, J.S., Nath, R.J.: ‘Piezoelectricity and polarization studies in unstretched san copolymer films’, Mater. Sci., 1999, 34, (21), pp. 53975401.
    54. 54)
      • 54. Hundal, J.S., Nath, R.: ‘Ferroelectric studies in stretched and corona charged SAN films’. IEEE 10th Int. Symp. on Electrets, Athens, Greece, 1999, pp. 659662.
    55. 55)
      • 55. Berlepsch, H.V., Kunstler, W., Danz, R.: ‘Piezoelectricity in acrylonitrile/methylacrylate copolymer’, Ferroelectrics, 1988, 81, (1), pp. 353356.
    56. 56)
      • 56. Lee, H., Salomon, R.E., Labes, M.M.: ‘Pyroelectricity due to a space-charge mechanism in a copolymer of acrylonitrile and vinylidene chloride’, J. Appl. Phys., 1979, 50, (5), pp. 37733774.
    57. 57)
      • 57. Tasaka, S., Nakamura, T., Inagaki, N.: ‘Ferroelectric behavior in copolymers of acrylonitrile and allylcyanide’, Jpn. J. Appl. Phys., 1992, 31, (8), pp. 24922494.
    58. 58)
      • 58. Wen, F., Xu, Z., Xia, W.M., et al: ‘High-energy-density poly(styrene-co-acrylonitrile) thin films’, J. Electron. Mater., 2013, 42, (12), pp. 34893493.
    59. 59)
      • 59. Wang, Y., Zhou, X., Lin, M., et al: ‘High-energy density in aromatic polyurea thin films’, Appl. Phys. Lett., 2009, 94, (20), p. 202905.
    60. 60)
      • 60. Wang, Y., Zhou, X., Chen, Q., et al: ‘Recent development of high energy density polymers for dielectric capacitors’, IEEE Trans. Dielectr. Electr. Insul., 2010, 17, (4), pp. 10361042.
    61. 61)
      • 61. Wu, S., Lin, M., Lu, S.G., et al: ‘Polar-fluoropolymer blends with tailored nanostructures for high energy density low loss capacitor applications’, Appl. Phys. Lett., 2011, 99, (13), p. 132901.
    62. 62)
      • 62. Zhang, Z.C., Chung, T.C.M.: ‘Study of VDF/TrFE/CTFE terpolymers for high pulsed capacitor with high energy density and low energy loss’, Macromolecules, 2007, 40, (4), pp. 783785.
    63. 63)
      • 63. Ngai, K.L., White, C.T.: ‘Frequency dependence of dielectric loss in condensed matter’, Phys. Rev. B, 1979, 20, (6), pp. 24752486.
    64. 64)
      • 64. Belloch, G.P., Sanchez, M.S., Ribelles, J.L.G., et al: ‘Conformational motions in immiscible blends of polycarbonate and styrene-acrylonitrile copolymers’, Polym. Eng. Sci., 1999, 39, (4), pp. 688698.
    65. 65)
      • 65. Zhou, X., Zhao, X.H., Suo, Z.G., et al: ‘Electrical breakdown and ultrahigh electrical energy density in poly(vinylidene fluoride-hexafluoropropylene) copolymer’, Appl. Phys. Lett., 2009, 94, (16), p. 162901.
    66. 66)
      • 66. Chu, B.J., Zhou, X., Ren, K.L., et al: ‘A dielectric polymer with high electric energy density and fast discharge speed’, Science, 2006, 313, (5785), pp. 334336.
    67. 67)
      • 67. Zhou, X., Chu, B.J., Neese, B., et al: ‘Electrical energy density and discharge characteristics of a poly(vinylidene fluoride-chlorotrifluoroethylene)copolymer’, IEEE Trans. Dielectr. Electr. Insul., 2007, 14, (5), pp. 11331138.
    68. 68)
      • 68. Wei, J.J., Zhang, Z.B., Tseng, J.K.: ‘Achieving high dielectric constant and low loss property in a dipolar glass polymer containing strongly dipolar and small-sized sulfone groups’, ACS Appl. Mater. Interfaces, 2015, 7, (9), pp. 52485257.
    69. 69)
      • 69. Liu, F.H., Li, Q., Li, Z.Y., et al: ‘Poly(methyl methacrylate)/boron nitride nanocomposites with enhanced energy density as high temperature dielectrics’, Compos. Sci. Technol., 2017, 142, pp. 139144.
    70. 70)
      • 70. Stern, S.A., Fried, J.R.: ‘Permeability of polymers to gases and vapors’, in Mark, James E. (Ed.): ‘Physical properties of polymers handbook’ (Springer, New York, 2007), pp. 10331047.
    71. 71)
      • 71. Yuan, X.P., Chung, T.C.M.: ‘Cross-linking effect on dielectric properties of polypropylene thin films and applications in electric energy storage’, Appl. Phys. Lett., 2011, 98, p. 062901.
    72. 72)
      • 72. Fukada, E., Takashita, S.: ‘Piezoelectric effect in polarized poly(vinylidene fluoride)’, Jpn. J. Appl. Phys., 1969, 8, (7), p. 960.
    73. 73)
      • 73. Hougham, G., Cassidy, P.E., Johns, K., et al: ‘Fluoropolymers 1: synthesis’ (Springer, USA, 2002).
    74. 74)
      • 74. Lovinger, A.J., Furukawa, T., Davis, G.T., et al: ‘Crystallographic changes characterizing the curie transition in three ferroelectric copolymers of vinylidene fluoride and trifluoroethylene: 2. Oriented or poled samples’, Polymer, 1983, 24, (10), pp. 12331239.
    75. 75)
      • 75. Lovinger, A.J., Johnson, G.E., Bair, H.E., et al: ‘Structural, dielectric, and thermal investigation of the curie transition in a tetrafluoroethylene copolymer of vinylidene fluoride’, J. Appl. Phys., 1984, 56, (9), pp. 24122418.
    76. 76)
      • 76. Ohigashi, H., Koga, K.: ‘Ferroelectric copolymers of vinylidenefluoride and trifluoroethylene with a large electromechanical coupling factor’, Jpn. J. Appl. Phys., 1982, 21, (8), pp. L455L457.
    77. 77)
      • 77. Koga, K., Ohigashi, H.: ‘Piezoelectricity and related properties of vinylidene fluoride and trifluoroethylene copolymers’, J. Appl. Phys., 1986, 59, (6), pp. 21422150.
    78. 78)
      • 78. Ohigashi, H.: ‘Piezoelectric polymers–materials and manufacture’, Jpn. J. Appl. Phys., 1985, 24, (S2), p. 23.
    79. 79)
      • 79. Lovinger, A.J., Davis, D.D., Cais, R.E., et al: ‘On the Curie temperature of poly(vinylidene fluoride)’, Macromolecules, 1986, 19, (5), pp. 14911494.
    80. 80)
      • 80. Koga, K., Nakano, N., Hattori, T., et al: ‘Crystallization, field-induced phase transformation, thermally induced phase transition, and piezoelectric activity in P(vinylidene fluoride-TrFE) copolymers with high molar content of vinylidene fluoride’, J. Appl. Phys., 1990, 67, (2), pp. 965974.
    81. 81)
      • 81. Xia, W.M., Xu, Z., Zhang, Q.P., et al: ‘Dependence of dielectric, ferroelectric, and piezoelectric properties on crystalline properties of p(VDF-co-TrFE) copolymers’, J. Polym. Sci. B, Polym. Phys., 2012, 50, (18), pp. 12711276.
    82. 82)
      • 82. Xia, W.M., Xu, Z., Wen, F., et al: ‘Crystalline properties dependence of dielectric and energy storage properties of poly(vinylidene fluoride-chlorotrifluoroethylene)’, Appl. Phys. Letts., 2010, 97, (22), p. 222905.
    83. 83)
      • 83. Lu, Y.Y., Claude, J., Neese, B., et al: ‘A modular approach to ferroelectric polymers with chemically tunable curie temperatures and dielectric constants’, J. Am. Chem. Soc., 2006, 128, (25), pp. 81208121.
    84. 84)
      • 84. Chung, T.C.M., Petchsuk, A.: ‘Synthesis and properties of ferroelectric fluoroterpolymers with curie transition at ambient temperature’, Macromolecules, 2002, 35, (20), pp. 76787684.
    85. 85)
      • 85. Tan, S.B., Liu, E.Q., Zhang, Q.P., et al: ‘Controlled hydrogenation of P(VDF-co-CTFE) to prepare P(VDF-co-TrFE-co-CTFE) in the presence of CuX (X = Cl, Br) complexes’, Chem. Commun., 2011, 47, (15), pp. 45444546.
    86. 86)
      • 86. Zhang, Z.C., Zhu, Z.G.: China Pat. CN201210086186.8, 2012.
    87. 87)
      • 87. Zhang, W.W., Wang, J., Gao, P., et al: ‘Synthesis of poly(vinylidene fluoride-trifluoroethylene) via a controlled silyl radical reduction of poly(vinylidene fluoride-chlorotrifluoroethylene)’, J. Mater. Chem. C, 2017, 5, (26), pp. 64336441.
    88. 88)
      • 88. Xia, W.M., Wang, Z.G., Xing, J.H., et al: ‘The dependence of dielectric and ferroelectric properties on crystal phase structures of the hydrogenized P(VDF-TrFE) films with different thermal processing’, IEEE Trans. Ultra. Ferro. Freq. Control, 2016, 63, (10), pp. 16741680.
    89. 89)
      • 89. Xia, W.M., Gu, Y.J., You, C.Y., et al: ‘A crystal phase transition and its effect on the dielectric properties of a hydrogenated P(VDF-co-TrFE) with low TrFE molar content’, RSC Adv., 2015, 5, (130), pp. 107557107565.
    90. 90)
      • 90. Cais, R., Kometani, J.: ‘Structural studies of vinylidene fluoride-tetrafluoroethylene copolymers by nuclear magnetic resonance spectorscopy’, Anal. Chim. Acta., 1986, 189, (1), pp. 101116.
    91. 91)
      • 91. Madorskaya, L.Y., Budtov, V.P., Otradina, G.A., et al: ‘Features of copolymerization of vinylidene fluoride with tetrafluoroethylene using ammonium persulphate’, Polym. Sci. USSR, 1986, 28, (5), pp. 10621071.
    92. 92)
      • 92. Loginova, M.N., Podlesskaya, N.K., Berezina, G.G.: ‘Some aspects of the formation and transformation of macromolecules during copolymerization of fluorine-containing monomers’, USSR. Plast. Massy, 1990, pp. 1928 (Chem Abstr., 1990, 114, 102888).
    93. 93)
      • 93. Golub, M., Wydeven, T., Johnson, A.: ‘On the similarity of plasma-polymerized tetrafluoroethylene and RF plasma-sputtered polytetrafluoroethylene’, Polym. Prepr. Div. Am. Chem. Soc., 1997, 38, (2), pp. 668669.
    94. 94)
      • 94. Lovinger, A.: ‘Ferroelectric transition in a copolymer of vinylidene fluoride and tetrafluoroethylene’, Macromolecules, 1983, 16, (9), pp. 15291534.
    95. 95)
      • 95. Lovinger, A., Davis, D., Cais, R., et al: ‘Compositional variation of the structure and solid-state transformations of vinylidene fluoride/tetrafluoroethylene copolymers’, Macromolecules, 1988, 21, (1), pp. 7883.
    96. 96)
      • 96. Lando, J., Doll, W.: ‘The polymorphism of poly(vinylidene fluoride). I. The effect of head-to-head structure’, J. Macromol. Sci. B, 1968, 2, (2), pp. 205218.
    97. 97)
      • 97. Tashiro, K., Kaito, H., Kobayashi, M.: ‘Structural changes in ferroelectric phase transitions of vinylidene fluoride-tetrafluoroethylene copolymers: 1. Vinylidene fluoride content dependence of the transition behaviour’, Polymer, 1992, 33, (14), pp. 29152928.
    98. 98)
      • 98. Kochervinski, V., Murasheva, Y.: ‘Microstructure and ferroelectric properties of copolymers of vinylidene fluoride with tetrafluoroethylene of the 71/29 composition’, Polym. Sci., 1991, 33, pp. 19671976.
    99. 99)
      • 99. Kochervinski, V., Malyshkina, A., Bessonova, N., et al: ‘Effect of recrystallization on the molecular mobility of a copolymer of vinylidene fluoride and hexafluoropropylene’, J. Appl. Polym. Sci., 2011, 120, (1), pp. 1320.
    100. 100)
      • 100. Lee, J.S., Shin, K.Y., Cheong, O.J., et al: ‘Highly sensitive and multifunctional tactile sensor using free-standing ZnO/PVDF thin film with graphene electrodes for pressure and temperature monitoring’, Sci. Rep., 2015, 5, pp. 7887.
    101. 101)
      • 101. Pullano, S.A., Mahbub, I., Islam, S.K., et al: ‘PVDF sensor stimulated by infrared radiation for temperature monitoring in microfluidic devices’, Sensors, 2017, 17, (4), p. 850.
    102. 102)
      • 102. Vu, D.C., Eiichi, S.: ‘Numerical simulation of output response of PVDF sensor attached on a cantilever beam subjected to impact loading’, Sensors, 2016, 16, (5), p. 601.
    103. 103)
      • 103. Mannsfeld, S.C., Tee, B.C., Stoltenberg, R.M., et al: ‘Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers’, Nature Mater., 2010, 9, (10), pp. 859864.
    104. 104)
      • 104. Maiolo, L., Maita, F., Pecora, A., et al: ‘Flexible PVDF-TrFE pyroelectric sensor integrated on a fully printed P-channel organic transistor’, Eurosensors XXVI, 2012, 47, pp. 526529.
    105. 105)
      • 105. Li, S., Crovetto, A., Peng, Z., et al: ‘Bi-resonant structure with piezoelectric PVDF films for energy harvesting from random vibration sources at low frequency’, Sens. Actuators A, Phys., 2016, 247, pp. 547554.
    106. 106)
      • 106. Siddiqui, S., Kim, D.I., Le, T.D., et al: ‘High-performance flexible lead-free nanocomposite piezoelectric nanogenerator for biomechanical energy harvesting and storage’, Nano Energy, 2015, 15, pp. 177185.
    107. 107)
      • 107. Mhetre, M.R., Abhyankar, H.K.: ‘Human exhaled air energy harvesting with specific reference to PVDF film’, Int. J. Eng. Sci. Technol., 2016, 20, (1), pp. 332339.
    108. 108)
      • 108. Gusarov, B., Gusarova, E., Viala, B., et al: ‘Thermal energy harvesting by piezoelectric PVDF polymer coupled with shape memory alloy ⋆’, Sens. Actuators A, Phys., 2016, 243, pp. 175181.
    109. 109)
      • 109. Feng, J.B., Xuan, S.H., Ding, L., et al: ‘Magnetoactive elastomer/PVDF composite film based magnetically controllable actuator with real-time deformation feedback property’, Compos. A, Appl. Sci. Manuf., 2017, 103, pp. 2534.
    110. 110)
      • 110. Schmidt, V.H., Lediaev, L., Polasik, J., et al: ‘Piezoelectric actuators employing PVDF coated with flexible PEDOT-PSS polymer electrodes’, IEEE Trans. Dielectr. Electr. Insul., 2006, 13, (5), pp. 11401148.
    111. 111)
      • 111. Raja, M., Ryu, S.H., Shanmugharaj, A.M.: ‘Influence of surface modified multiwalled carbon nanotubes on the mechanical and electroactive shape memory properties of polyurethane (PU)/poly(vinylidene diflouride) (PVDF) composites’, Colloids Surf. A, Physicochem. Eng. Asp., 2014, 450, (1), pp. 5966.
    112. 112)
      • 112. Furukawa, T., Date, M., Fukada, E.: ‘Hysteresis phenomena in polyvinylidene fluoride under high electric field’, J. Appl. Phys., 1980, 51, (2), pp. 11351141.
    113. 113)
      • 113. Koizumi, N., Murata, Y., Tsunashima, H.: ‘Polarization reversal and double hysteresis loop in copolymers of vinylidene fluoride and trifluoroethylene’, IEEE Trans. Electr. Insul., 1986, 21, (3), pp. 543548.
    114. 114)
      • 114. Furukawa, T.: ‘Structure and functional properties of ferroelectric polymers’, Adv. Colloid Interface Sci., 1997, 71, pp. 183208.
    115. 115)
      • 115. Takahashi, Y., Kodama, H., Nakamura, M., et al: ‘Antiferroelectric-like behavior of vinylidene fluoride/trifluoroethylene copolymers with low vinylidene fluoride content’, Polym. J., 1999, 31, (31), pp. 263267.
    116. 116)
      • 116. Furukawa, T., Takahashi, Y.: ‘Ferroelectric and antiferroelectric transitions in random copolymers of vinylidene fluoride and trifluoroethylene’, Ferroelectrics, 2011, 264, (1), pp. 17391748.
    117. 117)
      • 117. Guan, F., Yang, L., Wang, J., et al: ‘Confined ferroelectric properties in poly(vinylidene fluoride-co-chlorotrifluoroethylene)-graft-polystyrene graft copolymers for electric energy storage applications’, Adv. Funct. Mater., 2011, 21, (16), pp. 31763188.
    118. 118)
      • 118. Guan, F., Yuan, Z., Shu, E.W., et al: ‘Fast discharge speed in poly(vinylidene fluoride) graft copolymer dielectric films achieved by confined ferroelectricity’, Appl. Phys. Lett., 2009, 94, (5), p. 052907.
    119. 119)
      • 119. Li, J., Tan, S., Ding, S., et al: ‘High-field antiferroelectric behaviour and minimized energy loss in poly(vinylidene-co-trifluoroethylene)-graft-poly(ethyl methacrylate) for energy storage application’, J. Mater. Chem., 2012, 22, (44), pp. 2346823476.
    120. 120)
      • 120. Gong, H., Miao, B., Zhang, X., et al: ‘High-field antiferroelectric-like behavior in uniaxially stretched poly(vinylidene fluoride-trifluoroethylene-chlorotrifluoroethylene)-grafted-poly(methyl methacrylate) films with high energy density’, RSC Adv., 2016, 6, (2), pp. 15891599.
    121. 121)
      • 121. Wang, Z., Liu, J., Gong, H., et al: ‘Synthesis of poly(methyl methacrylate–methallyl alcohol) via controllable partial hydrogenation of poly(methyl methacrylate) towards high pulse energy storage capacitor application’, RSC Adv., 2016, 6, (41), pp. 3485534865.
    122. 122)
      • 122. Miao, B., Liu, J., Zhang, X., et al: ‘Ferroelectric relaxation dependence of poly(vinylidene fluoride-co-trifluoroethylene) on frequency and temperature after grafting with poly(methyl methacrylate)’, RSC Adv., 2016, 6, (87), pp. 8442684438.
    123. 123)
      • 123. Li, J., Hu, X., Gao, G., et al: ‘Tuning phase transition and ferroelectric properties of poly(vinylidene fluoride-co-trifluoroethylene) via grafting with desired poly(methacrylic ester)s as side chains’, J. Mater. Chem. C., 2013, 1, pp. 11111121.
    124. 124)
      • 124. Li, J., Gong, H., Yang, Q., et al: ‘Linear-like dielectric behavior and low energy loss achieved in poly(ethyl methacrylate) modified poly(vinylidene-co-trifluoroethylene)’, Appl. Phys. Lett., 2014, 104, (26), p. 263901.
    125. 125)
      • 125. Higashihata, Y., Sako, J., Yagi, T.: ‘Piezoelectricity of vinylidene fluoride-trifluoroethylene copolymers’, Ferroelectrics, 2012, 32, (1), pp. 8592.
    126. 126)
      • 126. Wang, T.T., Herbert, J.M., Glass, A.M.: ‘The applications of ferroelectric polymers’ (Chapman and Hall, Glasgow, New York, Blackie, 1988).
    127. 127)
      • 127. Bauer, F., Fousson, E., Zhang, Q.M., et al: ‘Ferroelectric copolymers and terpolymers for electrostrictors: synthesis and properties’, IEEE Trans. Dielectr. Electr. Insul., 2004, 11, (2), pp. 293298.
    128. 128)
      • 128. Zhang, Q.M., Bharti, V., Zhao, X.: ‘Giant electrostriction and relaxor ferroelectric behavior in electron-irradiated poly(vinylidene fluoride-trifluoroethylene) copolymer’, Science, 1998, 280, (5372), pp. 21012104.
    129. 129)
      • 129. Xia, F., Cheng, Z.Y., Xu, H.S., et al: ‘High electromechanical responses in terpolymer of poly(vinylidene fluoridetrifluoroethylene-chlorofluoroethylene)’, Adv. Mats., 2002, 14, (21), pp. 15741577.
    130. 130)
      • 130. Huang, C., Klein, R., Xia, F., et al: ‘Poly(vinylidene floride-trifluoroethylene) based high performance electroactive polymers’, IEEE Trans. Dielectr. Electr. Insul., 2003, 11, (2), pp. 299311.
    131. 131)
      • 131. Petchsuk, A.: ‘Ferroelectric terpolymer, based on semicrystalline VDF/TRFE/CHLORO-containing termonomers: synthesis, electrical properties, and functionalization reactions’. MS Thesis, The Pennsylvania State University, 2003.
    132. 132)
      • 132. Bobnar, V., Vodopivec, B., Kosec, M., et al: ‘Dielectric properties of relaxor-like vinylidene fluoride-trifluoroethylene-base electroactive polymers’, Macromolecules, 2003, 36, (12), pp. 44364442.
    133. 133)
      • 133. Zhang, Q.M., Huang, C., Xia, F., et al: ‘Electric EAP’, in Bar-Cohen, Y. (Ed.): ‘Electroactive polymers as artificial muscles-capabilities, potentials and challenges’ (SPIE Optical Engineering Press, WA, 2004), pp. 95150.
    134. 134)
      • 134. Xu, H., Shen, D., Zhang, Q.: ‘Structural and ferroelectric response in vinylidene fluoride/trifluoroethylene/hexafluoropropylene terpolymers’, Polymer, 2007, 48, (7), pp. 21242129.
    135. 135)
      • 135. Tan, S., Hu, X., Ding, S., et al: ‘Significantly improving dielectric and energy storage properties via uniaxially stretching crosslinked P(VDF-co-TrFE) films’, J. Mater. Chem. A, 2013, 1, (35), pp. 1035310361.
    136. 136)
      • 136. Zhang, Y., Zhao, Y., Tan, S., et al: ‘Inserting -CH=CH- into P(VDF-TrFE) by C-F activation mediated with Cu(0) in a controlled atom transfer radical elimination process’, Polym. Chem., 2017, 8, (11), pp. 18401849.
    137. 137)
      • 137. Zhuang, Z., Shi, H.: ‘Temperature-stable high electrostrictive strain relaxer ferroelectric ceramics for servo-actuator applications’, Sens. Actuators A, Phys., 1993, 35, (3), pp. 279282.
    138. 138)
      • 138. Zhang, Q.M., Su, J., Kim, C.H., et al: ‘An experimental investigation of electromechanical responses in a polyurethane elastomer’, J. Appl. Phys., 1997, 81, (6), pp. 27702776.
    139. 139)
      • 139. Hirai, T., Kasazaki, T., Kurita, Y., et al: ‘Polyurethane elastomer actuator’. US, US5977685 A, 1999.
    140. 140)
      • 140. Pelrine, R.E., Kornbluh, R.D., Joseph, J.P.: ‘Electrostriction of polymer dielectrics with compliant electrodes as a means of actuation’, Sens. Actuators A, Phys., 1998, 64, (64), pp. 7785.
    141. 141)
      • 141. Zhang, Q.M., Bharti, V., Cheng, Z.Y., et al: ‘Novel electrostrictive poly(vinylidene fluoride-trifluoroethylene) copolymer actuators’, Sens. Actuators A, Phys., 2001, 90, (1), pp. 138147.
    142. 142)
      • 142. Zhang, S., Zhang, N., Huang, C., et al: ‘Microstructure and electromechanical properties of carbon nanotube/poly(vinylidene fluoride–trifluoroethylene–chlorofluoroethylene) composites’, Adv. Mater., 2010, 17, (15), pp. 18971901.
    143. 143)
      • 143. Guiffard, B., Seveyrat, L., Sebald, G., et al: ‘Enhanced electric field-induced strain in non-percolative carbon nanopowder/polyurethane composites’, J. Phys. D, Appl. Phys., 2006, 39, (14), pp. 30533057.
    144. 144)
      • 144. Lallart, M., Cottinet, P.J., Lebrun, L., et al: ‘Evaluation of energy harvesting performance of electrostrictive polymer and carbon-filled terpolymer composites’, J. Appl. Phys., 2010, 108, (3), p. 034901.
    145. 145)
      • 145. Feng, X., Tadigadapa, S., Zhang, Q.M.: ‘Electroactive polymer based microfluidic pump’, Sens. Actuators A, Phys., 2006, 125, (2), pp. 346352.
    146. 146)
      • 146. Cianchetti, M., Mattoli, V., Mazzolai, B., et al: ‘A new design methodology of electrostrictive actuators for bio-inspired robotics’, Sens. Actuators B, Chem., 2009, 142, (1), pp. 288297.
    147. 147)
      • 147. Capsal, J.F., Galineau, J., Lallart, M., et al: ‘Plasticized relaxor ferroelectric terpolymer: toward giant electrostriction, high mechanical energy and low electric field actuators’, Sens. Actuators A, Phys., 2014, 207, (3), pp. 2531.
    148. 148)
      • 148. Bar-Cohen, Y.: ‘EAP History, Current Status, and Infrastructure’, in ‘Electroactive polymers as artificial muscles-capabilities, potentials and challenges’, (SPIE Optical Engineering Press, WA, 2004), pp. 113.
    149. 149)
      • 149. Frecker, M.I., Aguilera, W.M.: ‘Analytical modeling of a segmented unimorph actuator using electrostrictive P(VDF-TrFE) copolymer’, Smart Mater. Struct., 2004, 13, (1), pp. 8291.
    150. 150)
      • 150. Lallart, M., Capsal, J.F., Idrissa, A.K.M., et al: ‘Actuation abilities of multiphasic electroactive polymeric systems’, J. Appl. Phys., 2012, 112, (9), pp. 16111618.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-nde.2018.0001
Loading

Related content

content/journals/10.1049/iet-nde.2018.0001
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address