Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon openaccess Highly dispersive Ba0.6Sr0.4TiO3 nanoparticles modified P(VDF-HFP)/PMMA composite films with improved energy storage density and efficiency

Polymer composite films with high energy density as well as high efficiency are promising dielectric materials in pulsed power systems. In improving the energy discharged efficiency, poly vinylidene fluoride-hexafluoropropylene [P(VDF-HFP)] film blended with 20 vol.% poly(methylmethacrylate) (PMMA), which has a much slimmer ferroelectric hysteresis loop, is employed as the polymer matrix. Highly dispersive Ba0.6Sr0.4TiO3 (BST) nanoparticles with an average particle size of 12.1 nm are utilised to improve the polarisation of the blend film without sacrificing the dielectric strength. Uniform nanocomposite films with high flexibility and excellent energy-storage performance are obtained. Especially, due to the optimisation of both polymer matrix and fillers, the BST modified P(VDF-HFP)/PMMA blend films show improved breakdown strength and depressed energy loss, which leads to an enhanced energy density of 10.3 J/cm3 at 378 kV/mm.

References

    1. 1)
      • 2. Dang, Z.M., Yuan, J.K., Yao, S.H., et al: ‘Flexible nanodielectric materials with high permittivity for power energy storage’, Adv. Mater., 2013, 25, pp. 63346365.
    2. 2)
      • 37. And, S.G.K., Chan, K.L.A.: ‘FTIR imaging of polymeric materials under high-pressure carbon dioxide’, Macromolecules, 2004, 37, pp. 579584.
    3. 3)
      • 4. Whittingham, M.S.: ‘Materials challenges facing electrical energy storage’, MRS Bull., 2008, 33, pp. 411419.
    4. 4)
      • 18. Niu, Y., Bai, Y., Yu, K., et al: ‘Fluorocarboxylic acid modified barium titanate/poly(vinylidene fluoride) composite with significantly enhanced breakdown strength and high energy density’, RSC Adv., 2015, 5, pp. 6459664603.
    5. 5)
      • 3. Yao, Z., Song, Z., Hao, H., et al: ‘Homogeneous/inhomogeneous-structured dielectrics and their energy-storage performances’, Adv. Mater., 2017, 29, p. 1601727.
    6. 6)
      • 5. Cai, Z., Wang, X., Luo, B., et al: ‘Dielectric response and breakdown behavior of polymer–ceramic nanocomposites: the effect of nanoparticle distribution’, Compos. Sci. Technol., 2017, 145, pp. 105113.
    7. 7)
      • 28. Van Tassell, B.V., Yang, S., Le, C., et al: ‘Metacapacitors: printed thin film, flexible capacitors for power conversion applications’, IEEE Trans. Power. Electr., 2016, 31, pp. 26952708.
    8. 8)
      • 7. Wu, L., Wang, X., Gong, H., et al: ‘Core-satellite BaTiO3@SrTiO3 assemblies for a local compositionally graded relaxor ferroelectric capacitor with enhanced energy storage density and high energy efficiency’, J. Mater. Chem. C, 2015, 3, pp. 750758.
    9. 9)
      • 25. Hao, Y., Wang, X., Bi, K., et al: ‘Significantly enhanced energy storage performance promoted by ultimate sized ferroelectric BaTiO3 fillers in nanocomposite films’, Nano Energy, 2017, 31, pp. 4956.
    10. 10)
      • 39. Huang, L., Jia, Z., Kymissis, I., et al: ‘High k-capacitors and OFET gate dielectrics from self-assembled BaTiO3 and (Ba,Sr)TiO3nanocrystals in the superparaelectric limit’, Adv. Funct. Mater., 2010, 20, pp. 554560.
    11. 11)
      • 30. Kan, D., Terashima, T., Kanda, R., et al: ‘Blue-light emission at room temperature from Ar+-irradiated SrTiO3’, Nat. Mater., 2005, 4, pp. 816819.
    12. 12)
      • 8. Zhao, L., Liu, Q., Gao, J., et al: ‘Lead-free antiferroelectric silver niobate tantalate with high energy storage performance’, Adv. Mater., 2017, 29, p. 1701824.
    13. 13)
      • 9. Chu, B.J., Zhou, X., Ren, K.L., et al: ‘A dielectric polymer with high electric energy density and fast discharge speed’, Science, 2006, 313, pp. 334336.
    14. 14)
      • 26. Bi, M., Hao, Y., Zhang, J., et al: ‘Particle size effect of BaTiO3 nanofillers on the energy storage performance of polymer nanocomposites’, Nanoscale, 2017, 9, pp. 1638616395.
    15. 15)
      • 35. Yu, L., Cebe, P.: ‘Crystal polymorphism in electrospun composite nanofibers of poly(vinylidene fluoride) with nanoclay’, Polymer, 2009, 50, pp. 21332141.
    16. 16)
      • 1. Zhu, Y., Jiang, P., Zhang, Z., et al: ‘Dielectric phenomena and electrical energy storage of poly(vinylidene fluoride) based high-k polymers’, Chin. Chem. Lett., 2017, 28, pp. 20272035.
    17. 17)
      • 10. Hu, P.H., Shen, Y., Guan, Y.H., et al: ‘Topological-structure modulated polymer nanocomposites exhibiting highly enhanced dielectric strength and energy density’, Adv. Funct. Mater., 2014, 24, pp. 31723178.
    18. 18)
      • 36. Xing, C., Zhao, M., Zhao, L., et al: ‘Ionic liquid modified poly (vinylidene fluoride): crystalline structures, miscibility, and physical properties’, Polym. Chem., 2013, 4, pp. 57265734.
    19. 19)
      • 14. Chen, T., Liu, B.: ‘Enhanced dielectric properties of poly(vinylidene fluoride) composite filled with polyaniline-iron core-shell nanocomposites’, Mater. Lett., 2017, 210, pp. 165168.
    20. 20)
      • 41. Hossain, M.E., Liu, S.Y., O'Brien, S., et al: ‘Modeling of high-k dielectric nanocomposites’, Acta Mech., 2014, 225, pp. 11971209.
    21. 21)
      • 42. Kim, P., Doss, N.M., Tillotson, J.P., et al: ‘High energy density nanocomposites based on surface-modified BaTiO3 and a ferroelectric polymer’, ACS Nano, 2009, 3, pp. 25812592.
    22. 22)
      • 11. Luo, B.C., Wang, X.H., Wang, Y.P., et al: ‘Fabrication, characterization, properties and theoretical analysis of ceramic/PVDF composite flexible films with high dielectric constant and low dielectric loss’, J. Mater. Chem. A, 2014, 2, pp. 510519.
    23. 23)
      • 27. Hao, Y.N., Wang, X.H., Li, L.T.: ‘Highly dispersed SrTiO3 nanocubes from a rapid sol-precipitation method’, Nanoscale, 2014, 6, pp. 79407946.
    24. 24)
      • 17. Moharana, S., Mahaling, R.N.: ‘Silver (Ag)–graphene oxide (GO)–poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) nanostructured composites with high dielectric constant and low dielectric loss’, Chem. Phys. Lett., 2017, 680, pp. 3136.
    25. 25)
      • 19. Li, Q., Chen, L., Gadinski, M.R., et al: ‘Flexible high-temperature dielectric materials from polymer nanocomposites’, Nature, 2015, 523, pp. 576579.
    26. 26)
      • 32. Johnsi, M., Suthanthiraraj, S.A.: ‘Electrochemical and structural properties of a polymer electrolyte system based on the effect of CeO2 nanofiller with PVDF-co-HFP for energy storage devices’, Ionics, 2016, 22, pp. 10751083.
    27. 27)
      • 23. Liu, S.H., Xiu, S.M., Shen, B., et al: ‘Dielectric properties and energy storage densities of poly(vinylidenefluoride) nanocomposite with surface hydroxylated cube shaped Ba0.6Sr0.4TiO3 nanoparticles’, Polymers, 2016, 8, p. 45.
    28. 28)
      • 40. Huang, L., Liu, S., Van Tassell, B., et al: ‘Structure and performance of dielectric films based on self-assembled nanocrystals with a high dielectric constant’, Nanotechnology, 2013, 24, p. 415602.
    29. 29)
      • 13. Li, Q., Han, K., Gadinski, M.R., et al: ‘High energy and power density capacitors from solution-processed ternary ferroelectric polymer nanocomposites’, Adv. Mater., 2014, 26, pp. 62446249.
    30. 30)
      • 12. Wang, Y.F., Cui, J., Yuan, Q.B., et al: ‘Significantly enhanced breakdown strength and energy density in sandwich-structured barium titanate/poly(vinylidene fluoride) nanocomposites’, Adv. Mater., 2015, 27, pp. 66586663.
    31. 31)
      • 21. Liu, S., Zhai, J.: ‘A small loading of surface-modified Ba0.6Sr0.4TiO3 nanofiber-filled nanocomposites with enhanced dielectric constant and energy density’, RSC Adv., 2014, 4, pp. 4097340979.
    32. 32)
      • 33. Ma, W., Zhang, J., Chen, S., et al: ‘β-Phase of poly(vinylidene fluoride) formation in poly(vinylidene fluoride)/poly(methyl methacrylate) blend from solutions’, Appl. Surf. Sci., 2008, 254, pp. 56355642.
    33. 33)
      • 24. Cai, Z., Wang, X., Luo, B., et al: ‘Hierarchical-structured dielectric permittivity and breakdown performances of polymer-ceramic nanocomposites’, Ceram. Int., 2017, 44, pp. 843848.
    34. 34)
      • 20. Luo, B., Wang, X., Wang, H., et al: ‘P(VDF-HFP)/PMMA flexible composite films with enhanced energy storage density and efficiency’, Compos. Sci. Technol., 2017, 151, pp. 94103.
    35. 35)
      • 16. Li, J., Claude, J., Norena-Franco, L.E., et al: ‘Electrical energy storage in ferroelectric polymer nanocomposites containing surface-functionalized BaTiO3nanoparticles’, Chem. Mater., 2008, 20, pp. 63046306.
    36. 36)
      • 6. Thakur, , V.K., , Gupta, , R K.: ‘Recent progress on ferroelectric polymer-based nanocomposites for high energy density capacitors: synthesis, dielectric properties, and future aspects’, Chem. Rev., 2016, 116, pp. 42604317.
    37. 37)
      • 29. Bellingeri, E., Pellegrino, L., Marré, D., et al: ‘All-SrTiO3 field effect devices made by anodic oxidation of epitaxial semiconducting thin films’, J. Appl. Phys., 2003, 94, pp. 59765981.
    38. 38)
      • 34. Zak, A.K., Gan, W.C., Majid, W.H.A., et al: ‘Experimental and theoretical dielectric studies of PVDF/PZT nanocomposite thin films’, Ceram. Int., 2011, 37, pp. 16531660.
    39. 39)
      • 38. Hao, Y.N., Bi, K., O'Brien, S., et al: ‘Interface structure, precursor rheology and dielectric properties of BaTiO3/PVDF–HFP nanocomposite films prepared from colloidal perovskite nanoparticles’, RSC Adv., 2017, 7, pp. 3288632892.
    40. 40)
      • 22. Zhang, D., Liu, W., Tang, L., et al: ‘High performance capacitors via aligned TiO2 nanowire array’, Appl. Phys. Lett., 2017, 110, p. 133902.
    41. 41)
      • 15. Abruna, H.D., Goodenough, J.B., Buchanan, M.: ‘ANYL 28-Summary overview of basic research needs for electrical energy storage’, Abstr. Pap. Am. Chem. Soc., 2007, 234, pp.1155.
    42. 42)
      • 31. Chen, Y.X., Tang, X., Shu, J., et al: ‘Crosslinked P(VDF-CTFE)/PS-COOH nanocomposites for high-energy-density capacitor application’, J. Polym. Sci. Polym. Phys., 2016, 54, pp. 11601169.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-nde.2017.0007
Loading

Related content

content/journals/10.1049/iet-nde.2017.0007
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address