http://iet.metastore.ingenta.com
1887

access icon openaccess Highly dispersive Ba0.6Sr0.4TiO3 nanoparticles modified P(VDF-HFP)/PMMA composite films with improved energy storage density and efficiency

  • XML
    73.048828125Kb
  • PDF
    5.551298141479492MB
  • HTML
    68.98828125Kb
Loading full text...

Full text loading...

/deliver/fulltext/iet-nde/1/1/IET-NDE.2017.0007.html;jsessionid=vt6n9a2eufxj.x-iet-live-01?itemId=%2fcontent%2fjournals%2f10.1049%2fiet-nde.2017.0007&mimeType=html&fmt=ahah

References

    1. 1)
      • 1. Zhu, Y., Jiang, P., Zhang, Z., et al: ‘Dielectric phenomena and electrical energy storage of poly(vinylidene fluoride) based high-k polymers’, Chin. Chem. Lett., 2017, 28, pp. 20272035.
    2. 2)
      • 2. Dang, Z.M., Yuan, J.K., Yao, S.H., et al: ‘Flexible nanodielectric materials with high permittivity for power energy storage’, Adv. Mater., 2013, 25, pp. 63346365.
    3. 3)
      • 3. Yao, Z., Song, Z., Hao, H., et al: ‘Homogeneous/inhomogeneous-structured dielectrics and their energy-storage performances’, Adv. Mater., 2017, 29, p. 1601727.
    4. 4)
      • 4. Whittingham, M.S.: ‘Materials challenges facing electrical energy storage’, MRS Bull., 2008, 33, pp. 411419.
    5. 5)
      • 5. Cai, Z., Wang, X., Luo, B., et al: ‘Dielectric response and breakdown behavior of polymer–ceramic nanocomposites: the effect of nanoparticle distribution’, Compos. Sci. Technol., 2017, 145, pp. 105113.
    6. 6)
      • 6. Thakur, , V.K., , Gupta, , R K.: ‘Recent progress on ferroelectric polymer-based nanocomposites for high energy density capacitors: synthesis, dielectric properties, and future aspects’, Chem. Rev., 2016, 116, pp. 42604317.
    7. 7)
      • 7. Wu, L., Wang, X., Gong, H., et al: ‘Core-satellite BaTiO3@SrTiO3 assemblies for a local compositionally graded relaxor ferroelectric capacitor with enhanced energy storage density and high energy efficiency’, J. Mater. Chem. C, 2015, 3, pp. 750758.
    8. 8)
      • 8. Zhao, L., Liu, Q., Gao, J., et al: ‘Lead-free antiferroelectric silver niobate tantalate with high energy storage performance’, Adv. Mater., 2017, 29, p. 1701824.
    9. 9)
      • 9. Chu, B.J., Zhou, X., Ren, K.L., et al: ‘A dielectric polymer with high electric energy density and fast discharge speed’, Science, 2006, 313, pp. 334336.
    10. 10)
      • 10. Hu, P.H., Shen, Y., Guan, Y.H., et al: ‘Topological-structure modulated polymer nanocomposites exhibiting highly enhanced dielectric strength and energy density’, Adv. Funct. Mater., 2014, 24, pp. 31723178.
    11. 11)
      • 11. Luo, B.C., Wang, X.H., Wang, Y.P., et al: ‘Fabrication, characterization, properties and theoretical analysis of ceramic/PVDF composite flexible films with high dielectric constant and low dielectric loss’, J. Mater. Chem. A, 2014, 2, pp. 510519.
    12. 12)
      • 12. Wang, Y.F., Cui, J., Yuan, Q.B., et al: ‘Significantly enhanced breakdown strength and energy density in sandwich-structured barium titanate/poly(vinylidene fluoride) nanocomposites’, Adv. Mater., 2015, 27, pp. 66586663.
    13. 13)
      • 13. Li, Q., Han, K., Gadinski, M.R., et al: ‘High energy and power density capacitors from solution-processed ternary ferroelectric polymer nanocomposites’, Adv. Mater., 2014, 26, pp. 62446249.
    14. 14)
      • 14. Chen, T., Liu, B.: ‘Enhanced dielectric properties of poly(vinylidene fluoride) composite filled with polyaniline-iron core-shell nanocomposites’, Mater. Lett., 2017, 210, pp. 165168.
    15. 15)
      • 15. Abruna, H.D., Goodenough, J.B., Buchanan, M.: ‘ANYL 28-Summary overview of basic research needs for electrical energy storage’, Abstr. Pap. Am. Chem. Soc., 2007, 234, pp.1155.
    16. 16)
      • 16. Li, J., Claude, J., Norena-Franco, L.E., et al: ‘Electrical energy storage in ferroelectric polymer nanocomposites containing surface-functionalized BaTiO3nanoparticles’, Chem. Mater., 2008, 20, pp. 63046306.
    17. 17)
      • 17. Moharana, S., Mahaling, R.N.: ‘Silver (Ag)–graphene oxide (GO)–poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) nanostructured composites with high dielectric constant and low dielectric loss’, Chem. Phys. Lett., 2017, 680, pp. 3136.
    18. 18)
      • 18. Niu, Y., Bai, Y., Yu, K., et al: ‘Fluorocarboxylic acid modified barium titanate/poly(vinylidene fluoride) composite with significantly enhanced breakdown strength and high energy density’, RSC Adv., 2015, 5, pp. 6459664603.
    19. 19)
      • 19. Li, Q., Chen, L., Gadinski, M.R., et al: ‘Flexible high-temperature dielectric materials from polymer nanocomposites’, Nature, 2015, 523, pp. 576579.
    20. 20)
      • 20. Luo, B., Wang, X., Wang, H., et al: ‘P(VDF-HFP)/PMMA flexible composite films with enhanced energy storage density and efficiency’, Compos. Sci. Technol., 2017, 151, pp. 94103.
    21. 21)
      • 21. Liu, S., Zhai, J.: ‘A small loading of surface-modified Ba0.6Sr0.4TiO3 nanofiber-filled nanocomposites with enhanced dielectric constant and energy density’, RSC Adv., 2014, 4, pp. 4097340979.
    22. 22)
      • 22. Zhang, D., Liu, W., Tang, L., et al: ‘High performance capacitors via aligned TiO2 nanowire array’, Appl. Phys. Lett., 2017, 110, p. 133902.
    23. 23)
      • 23. Liu, S.H., Xiu, S.M., Shen, B., et al: ‘Dielectric properties and energy storage densities of poly(vinylidenefluoride) nanocomposite with surface hydroxylated cube shaped Ba0.6Sr0.4TiO3 nanoparticles’, Polymers, 2016, 8, p. 45.
    24. 24)
      • 24. Cai, Z., Wang, X., Luo, B., et al: ‘Hierarchical-structured dielectric permittivity and breakdown performances of polymer-ceramic nanocomposites’, Ceram. Int., 2017, 44, pp. 843848.
    25. 25)
      • 25. Hao, Y., Wang, X., Bi, K., et al: ‘Significantly enhanced energy storage performance promoted by ultimate sized ferroelectric BaTiO3 fillers in nanocomposite films’, Nano Energy, 2017, 31, pp. 4956.
    26. 26)
      • 26. Bi, M., Hao, Y., Zhang, J., et al: ‘Particle size effect of BaTiO3 nanofillers on the energy storage performance of polymer nanocomposites’, Nanoscale, 2017, 9, pp. 1638616395.
    27. 27)
      • 27. Hao, Y.N., Wang, X.H., Li, L.T.: ‘Highly dispersed SrTiO3 nanocubes from a rapid sol-precipitation method’, Nanoscale, 2014, 6, pp. 79407946.
    28. 28)
      • 28. Van Tassell, B.V., Yang, S., Le, C., et al: ‘Metacapacitors: printed thin film, flexible capacitors for power conversion applications’, IEEE Trans. Power. Electr., 2016, 31, pp. 26952708.
    29. 29)
      • 29. Bellingeri, E., Pellegrino, L., Marré, D., et al: ‘All-SrTiO3 field effect devices made by anodic oxidation of epitaxial semiconducting thin films’, J. Appl. Phys., 2003, 94, pp. 59765981.
    30. 30)
      • 30. Kan, D., Terashima, T., Kanda, R., et al: ‘Blue-light emission at room temperature from Ar+-irradiated SrTiO3’, Nat. Mater., 2005, 4, pp. 816819.
    31. 31)
      • 31. Chen, Y.X., Tang, X., Shu, J., et al: ‘Crosslinked P(VDF-CTFE)/PS-COOH nanocomposites for high-energy-density capacitor application’, J. Polym. Sci. Polym. Phys., 2016, 54, pp. 11601169.
    32. 32)
      • 32. Johnsi, M., Suthanthiraraj, S.A.: ‘Electrochemical and structural properties of a polymer electrolyte system based on the effect of CeO2 nanofiller with PVDF-co-HFP for energy storage devices’, Ionics, 2016, 22, pp. 10751083.
    33. 33)
      • 33. Ma, W., Zhang, J., Chen, S., et al: ‘β-Phase of poly(vinylidene fluoride) formation in poly(vinylidene fluoride)/poly(methyl methacrylate) blend from solutions’, Appl. Surf. Sci., 2008, 254, pp. 56355642.
    34. 34)
      • 34. Zak, A.K., Gan, W.C., Majid, W.H.A., et al: ‘Experimental and theoretical dielectric studies of PVDF/PZT nanocomposite thin films’, Ceram. Int., 2011, 37, pp. 16531660.
    35. 35)
      • 35. Yu, L., Cebe, P.: ‘Crystal polymorphism in electrospun composite nanofibers of poly(vinylidene fluoride) with nanoclay’, Polymer, 2009, 50, pp. 21332141.
    36. 36)
      • 36. Xing, C., Zhao, M., Zhao, L., et al: ‘Ionic liquid modified poly (vinylidene fluoride): crystalline structures, miscibility, and physical properties’, Polym. Chem., 2013, 4, pp. 57265734.
    37. 37)
      • 37. And, S.G.K., Chan, K.L.A.: ‘FTIR imaging of polymeric materials under high-pressure carbon dioxide’, Macromolecules, 2004, 37, pp. 579584.
    38. 38)
      • 38. Hao, Y.N., Bi, K., O'Brien, S., et al: ‘Interface structure, precursor rheology and dielectric properties of BaTiO3/PVDF–HFP nanocomposite films prepared from colloidal perovskite nanoparticles’, RSC Adv., 2017, 7, pp. 3288632892.
    39. 39)
      • 39. Huang, L., Jia, Z., Kymissis, I., et al: ‘High k-capacitors and OFET gate dielectrics from self-assembled BaTiO3 and (Ba,Sr)TiO3nanocrystals in the superparaelectric limit’, Adv. Funct. Mater., 2010, 20, pp. 554560.
    40. 40)
      • 40. Huang, L., Liu, S., Van Tassell, B., et al: ‘Structure and performance of dielectric films based on self-assembled nanocrystals with a high dielectric constant’, Nanotechnology, 2013, 24, p. 415602.
    41. 41)
      • 41. Hossain, M.E., Liu, S.Y., O'Brien, S., et al: ‘Modeling of high-k dielectric nanocomposites’, Acta Mech., 2014, 225, pp. 11971209.
    42. 42)
      • 42. Kim, P., Doss, N.M., Tillotson, J.P., et al: ‘High energy density nanocomposites based on surface-modified BaTiO3 and a ferroelectric polymer’, ACS Nano, 2009, 3, pp. 25812592.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-nde.2017.0007
Loading

Related content

content/journals/10.1049/iet-nde.2017.0007
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address