http://iet.metastore.ingenta.com
1887

access icon openaccess Advances in lead-free high-temperature dielectric materials for ceramic capacitor application

Loading full text...

Full text loading...

/deliver/fulltext/iet-nde/1/1/IET-NDE.2017.0003.html;jsessionid=a3odgd5icnas.x-iet-live-01?itemId=%2fcontent%2fjournals%2f10.1049%2fiet-nde.2017.0003&mimeType=html&fmt=ahah

References

    1. 1)
      • 1. Ogihara, H., Randall, C.A., Trolier-McKinstry, S.: ‘High-energy density capacitors utilizing 0.7BaTiO3–0.3BiScO3 ceramics’, J. Am. Ceram. Soc., 2009, 92, (8), pp. 17191724.
    2. 2)
      • 2. Pan, M.J., Randall, C.A.: ‘A brief introduction to ceramic capacitors’, IEEE Electr. Insul. Mag., 2010, 26, (3), pp. 4450.
    3. 3)
      • 3. Fiedziuszko, S.J., Hunter, I.C., Itoh, T., et al: ‘Dielectric materials, devices, and circuits’, IEEE T. Microw. Theory, 2002, 50, (3), pp. 706720.
    4. 4)
      • 4. Kishi, H., Mizuno, Y., Chazono, H.: ‘Base-metal electrode-multilayer ceramic capacitors: past, present and future perspectives’, Jpn. J. Appl. Phys. Inter., 2003, 42, (1), pp. 115.
    5. 5)
      • 5. Watson, J., Castro, G.: ‘A review of high-temperature electronics technology and applications’, J. Mater. Sci., Mater. Electron., 2015, 26, (12), pp. 92269235.
    6. 6)
      • 6. Zeb, A., Milne, S.J.: ‘High temperature dielectric ceramics: a review of temperature-stable high-permittivity perovskites’, J. Mater. Sci., Mater. Electron., 2015, 26, (12), pp. 92439255.
    7. 7)
      • 7. Sandia National LaboratoriesFirst high-temperature electronics products survey 2005’, (Sandia Corporation, 2006), pp. 143.
    8. 8)
      • 8. Johnson, R.W., Evans, J.L., Jacobsen, P., et al: ‘The changing automotive environment: high-temperature electronics’, IEEE Trans. Electron. Packag. Manuf., 2005, 27, (3), pp. 164176.
    9. 9)
      • 9. Greenwell, R.L., Mccue, B.M., Zuo, L., et al: ‘SOI-based integrated circuits for high-temperature power electronics applications’. Applied Power Electronics Conf. and Exposition, Texas, USA, March 2011.
    10. 10)
      • 10. Celler, G.K., Cristoloveanu, S.: ‘Frontiers of silicon-on-insulator’, J. Appl. Phys., 2003, 93, (9), pp. 49554978.
    11. 11)
      • 11. Neudeck, P.G., Okojie, R.S., Chen, L.Y.: ‘High-temperature electronics – a role for wide bandgap semiconductors?’, Proc. IEEE, 2002, 90, (6), pp. 10651076.
    12. 12)
      • 12. Matsunami, H.: ‘Current SiC technology for power electronic devices beyond Si’, Microelectron. Eng., 2006, 83, (1), pp. 24.
    13. 13)
      • 13. Bhatnagar, M., Baliga, B.J.: ‘Comparison of 6H–SiC, 3C–SiC, and Si for power devices’, IEEE Trans. Electron. Dev., 1993, 40, (3), pp. 645655.
    14. 14)
      • 14. Groh, C., Kobayashi, K., Shimizu, H., et al: ‘High-temperature multilayer ceramic capacitors based on 100−x(94Bi1/2Na1/2TiO3–6BaTiO3)–xK0.5Na0.5NbO3’, J. Am. Ceram. Soc., 2016, 99, (6), pp. 20402046.
    15. 15)
      • 15. Acosta, M., Zang, J., Jo, W., et al: ‘High-temperature dielectrics in CaZrO3-modified Bi1/2Na1/2TiO3-based lead-free ceramics’, J. Eur. Ceram. Soc., 2012, 32, (16), pp. 43274334.
    16. 16)
      • 16. Zang, J., Jo, W., Zhang, H., et al: ‘Bi1/2Na1/2TiO3–BaTiO3 based thick-film capacitors for high-temperature applications’, J. Eur. Ceram. Soc., 2014, 34, (1), pp. 3743.
    17. 17)
      • 17. Randall, C.A., Ogihara, H., Kim, J.R., et al: ‘High temperature and high energy density dielectric materials’. Pulsed Power Conf., Washington DC, USA, August 2009, pp. 346351.
    18. 18)
      • 18. Stringer, C.J., Donnelly, N.J., Shrout, T.R., et al: ‘Dielectric characteristics of perovskite-structured high-temperature relaxor ferroelectrics: the BiScO3–Pb(Mg1/3Nb2/3)O3–PbTiO3 ternary system’, J. Am. Ceram. Soc., 2008, 91, (6), pp. 17811787.
    19. 19)
      • 19. Shvartsman, V.V., Lupascu, D.C., Green, D.J.: ‘Lead-free relaxor ferroelectrics’, J. Am. Ceram. Soc., 2012, 95, (1), pp. 126.
    20. 20)
      • 20. The EUEU-Directive 2002/95/EC: restriction of the use of certain hazardous substances in electrical and electronic equipment (RoHS)’, Off. J. Eur. Union, 2003, 46, (L37), pp. 1923.
    21. 21)
      • 21. Wu, J., Fan, Z., Xiao, D., et al: ‘Multiferroic bismuth ferrite-based materials for multifunctional applications: ceramic bulks, thin films and nanostructures’, Prog. Mater. Sci., 2016, 84, pp. 335402.
    22. 22)
      • 22. Zheng, T., Wu, J.: ‘Effects of site engineering and doped element types on piezoelectric and dielectric properties of bismuth ferrite lead-free ceramics’, J. Mater. Chem. C, 2015, 3, (43), pp. 1132611334.
    23. 23)
      • 23. Wang, Y.P., Zhou, L., Zhang, M.F., et al: ‘Room-temperature saturated ferroelectric polarization in BiFeO3 ceramics synthesized by rapid liquid phase sintering’, Appl. Phys. Lett., 2004, 84, (10), pp. 17311733.
    24. 24)
      • 24. Wei, Y., Wang, X., Jia, J., et al: ‘Multiferroic and piezoelectric properties of 0.65BiFeO3–0.35BaTiO3 ceramic with pseudo-cubic symmetry’, Ceram. Int., 2012, 38, (4), pp. 34993502.
    25. 25)
      • 25. Wang, T.H., Tu, C.S., Chen, H.Y., et al: ‘Magnetoelectric coupling and phase transition in BiFeO3 and (BiFeO3)0.95(BaTiO3)0.05 ceramics’, J. Appl. Phys., 2011, 109, (4), p. 044101.
    26. 26)
      • 26. Lv, J., Wu, J., Wu, W.: ‘Enhanced electrical properties of quenched (1–x)Bi1–ySmyFeO3xBiScO3 lead-free ceramics’, J. Phys. Chem. C, 2015, 119, (36), pp. 2110521115.
    27. 27)
      • 27. Zheng, T., Wu, J.: ‘Enhanced piezoelectric activity in high-temperature Bi1−xySmxLayFeO3 lead-free ceramics’, J. Mater. Chem. C, 2015, 3, (15), pp. 36843693.
    28. 28)
      • 28. Yang, H., Jain, M., Suvorova, N.A., et al: ‘Temperature-dependent leakage mechanisms of Pt∕BiFeO3∕SrRuO3 thin film capacitors’, Appl. Phys. Lett., 2007, 91, (7), p. 072911.
    29. 29)
      • 29. Correia, T., Stewart, M., Ellmore, A., et al: ‘Lead-free ceramics with high energy density and reduced losses for high temperature applications’, Adv. Eng. Mater., 2017, 19, (6), p. 1700019.
    30. 30)
      • 30. Correia, T.M., McMillen, M., Rokosz, M.K., et al: ‘A lead-free and high-energy density ceramic for energy storage applications’, J. Am. Ceram. Soc., 2013, 96, (9), pp. 26992702.
    31. 31)
      • 31. Zheng, P., Zhang, J.L., Tan, Y.Q., et al: ‘Grain-size effects on dielectric and piezoelectric properties of poled BaTiO3 ceramics’, Acta Mater., 2012, 60, (13–14), pp. 50225030.
    32. 32)
      • 32. Zhang, J., Hou, Y., Zheng, M., et al: ‘The occupation behavior of Y2O3 and its effect on the microstructure and electric properties in X7R dielectrics’, J. Am. Ceram. Soc., 2016, 99, (4), pp. 13751382.
    33. 33)
      • 33. Acosta, M., Schmitt, L.A., Molina-Luna, L., et al: ‘Core-shell lead-free piezoelectric ceramics: current status and advanced characterization of the Bi1/2Na1/2TiO3–SrTiO3 system’, J. Am. Ceram. Soc., 2015, 98, (11), pp. 34053422.
    34. 34)
      • 34. Bokov, A.A., Ye, Z.G.: ‘Recent progress in relaxor ferroelectrics with perovskite structure’, J. Mater. Sci., 2006, 41, (1), pp. 3152.
    35. 35)
      • 35. Muhammad, R., Iqbal, Y., Reaney, I.M.: ‘BaTiO3–Bi(Mg2/3Nb1/3)O3 ceramics for high-temperature capacitor applications’, J. Am. Ceram. Soc., 2016, 99, (6), pp. 20892095.
    36. 36)
      • 36. Ogihara, H., Randall, C.A., Trolier-McKinstry, S.: ‘Weakly coupled relaxor behavior of BaTiO3–BiScO3 ceramics’, J. Am. Ceram. Soc., 2009, 92, (1), pp. 110118.
    37. 37)
      • 37. Tinberg, D.S., Trolier-McKinstry, S.: ‘Structural and electrical characterization of xBiScO3–(1−x)BaTiO3 thin films’, J. Appl. Phys., 2007, 101, (2), p. 024112.
    38. 38)
      • 38. Lim, J.B., Zhang, S., Kim, N., et al: ‘High-temperature dielectrics in the BiScO3–BaTiO3–(K1/2Bi1/2)TiO3 ternary system’, J. Am. Ceram. Soc., 2009, 92, (3), pp. 679682.
    39. 39)
      • 39. Cui, L., Hou, Y.D., Wang, S., et al: ‘Relaxor behavior of (Ba,Bi)(Ti,Al)O3 ferroelectric ceramic’, J. Appl. Phys., 2010, 107, (5), p. 054105.
    40. 40)
      • 40. Hou, Y.D., Cui, L., Si, M.J., et al: ‘The variation of curie temperature and dielectric relaxor behaviour in the nominal (1−x)BaTiO3xBiAlO3 system’, J. Electroceram., 2012, 28, (2–3), pp. 105108.
    41. 41)
      • 41. Liu, M., Hao, H., Zhen, Y., et al: ‘Temperature stability of dielectric properties for xBiAlO3–(1−x)BaTiO3 ceramics’, J. Eur. Ceram. Soc., 2015, 35, (8), pp. 23032311.
    42. 42)
      • 42. Huang, C.C., Cann, D.P.: ‘Phase transitions and dielectric properties in Bi(Zn1/2Ti1/2)O3–BaTiO3 perovskite solid solutions’, J. Appl. Phys., 2008, 104, (2), p. 4.
    43. 43)
      • 43. Raengthon, N., Sebastian, T., Cumming, D., et al: ‘BaTiO3–Bi(Zn1/2Ti1/2)O3–BiScO3 ceramics for high-temperature capacitor applications’, J. Am. Ceram. Soc., 2012, 95, (11), pp. 35543561.
    44. 44)
      • 44. Raengthon, N., Cann, D.P.: ‘High temperature electronic properties of BaTiO3–Bi(Zn1/2Ti1/2)O3–BiInO3 for capacitor applications’, J. Electroceram., 2012, 28, (2–3), pp. 165171.
    45. 45)
      • 45. Raengthon, N., Brown-Shaklee, H.J., Brennecka, G.L., et al: ‘Dielectric properties of BaTiO3–Bi(Zn1/2Ti1/2)O3–NaNbO3 solid solutions’, J. Mater. Sci., 2012, 48, (5), pp. 22452250.
    46. 46)
      • 46. Raengthon, N., Cann, D.P.: ‘High-K (Ba0.8Bi0.2)(Zn0.1Ti0.9)O3 ceramics for high-temperature capacitor applications’, IEEE Trans. Ultrason. Ferroelectr., 2011, 58, (9), pp. 19541958.
    47. 47)
      • 47. Wang, Y., Chen, X., Zhou, H., et al: ‘Evolution of phase transformation behavior and dielectric temperature stability of BaTiO3–Bi(Zn0.5Zr0.5)O3 ceramics system’, J. Alloys Compd., 2013, 551, pp. 365369.
    48. 48)
      • 48. Chen, X., Chen, J., Ma, D., et al: ‘High relative permittivity, low dielectric loss and good thermal stability of BaTiO3–Bi(Mg0.5Zr0.5)O3 solid solution’, Ceram. Int., 2015, 41, (2), pp. 20812088.
    49. 49)
      • 49. Zeb, A., Milne, S.J.: ‘Temperature-stable dielectric properties from −20°C to 430°C in the system BaTiO3–Bi(Mg0.5Zr0.5)O3’, J. Eur. Ceram. Soc., 2014, 34, (13), pp. 31593166.
    50. 50)
      • 50. Xiong, B., Hao, H., Zhang, S., et al: ‘Dielectric behaviors of Nb2O5–Co2O3 doped BaTiO3–Bi(Mg1/2Ti1/2)O3 ceramics’, Ceram. Int., 2012, 38, pp. S45S48.
    51. 51)
      • 51. Muhammad, R., Iqbal, Y.: ‘Enhanced dielectric properties in Nb-doped Bt-BMT ceramics’, Ceram. Int., 2016, 42, (16), pp. 1941319419.
    52. 52)
      • 52. Wang, T., Jin, L., Li, C., et al: ‘Relaxor ferroelectric BaTiO3–Bi(Mg2/3Nb1/3)O3 ceramics for energy storage application’, J. Am. Ceram. Soc., 2015, 98, (2), pp. 559566.
    53. 53)
      • 53. Ma, D., Chen, X., Huang, G., et al: ‘Temperature stability, structural evolution and dielectric properties of BaTiO3–Bi(Mg2/3Ta1/3)O3 perovskite ceramics’, Ceram. Int., 2015, 41, (5), pp. 71577161.
    54. 54)
      • 54. Chen, X., Huang, G., Ma, D., et al: ‘High thermal stability and low dielectric loss of BaTiO3–Bi(Li1/3Zr2/3)O3 solid solution’, Ceram. Int., 2017, 43, (1), pp. 926929.
    55. 55)
      • 55. Zeb, A., Bai, Y., Button, T., et al: ‘Temperature-stable relative permittivity from −70°C to 500°C in (Ba0.8Ca0.2)TiO3–Bi(Mg0.5Ti0.5)O3–NaNbO3 ceramics’, J. Am. Ceram. Soc., 2014, 97, (8), pp. 24792483.
    56. 56)
      • 56. Chen, Z., Li, G., Sun, X., et al: ‘La2o3 modified 0.4(Ba0.8Ca0.2)TiO3–0.6Bi(Mg0.5Ti0.5)O3 ceramics for high-temperature capacitor applications’, Ceram. Int., 2015, 41, (9), pp. 1105711061.
    57. 57)
      • 57. Huang, G., Chen, X., Ma, D., et al: ‘Thermally stable Ba0.8Ca0.2TiO3–Bi(Mg0.5Zr0.5)O3 solid solution with low dielectric loss in a broad temperature usage range’, J. Mater. Sci., Mater. Electron., 2016, 27, (6), pp. 65526557.
    58. 58)
      • 58. Zeb, A., Milne, S.J.: ‘Low variation in relative permittivity over the temperature range 25–450°C for ceramics in the system (1−x)[Ba0.8Ca0.2TiO3]–x[Bi(Zn0.5Ti0.5)O3]’, J. Eur. Ceram. Soc., 2014, 34, (7), pp. 17271732.
    59. 59)
      • 59. Yao, G., Wang, X., Wu, Y., et al: ‘Nb-Doped 0.9BaTiO3–0.1(Bi0.5Na0.5)TiO3 ceramics with stable dielectric properties at high temperature’, J. Am. Ceram. Soc., 2012, 95, (2), pp. 614618.
    60. 60)
      • 60. Li, L., Zhang, B.: ‘The effect of bimodal model on the ultra-broad temperature stable BaTiO3–Na0.5Bi0.5TiO3–Nb2O5 system’, Scr. Mater., 2016, 114, pp. 170174.
    61. 61)
      • 61. Zhang, N., Li, L., Chen, J., et al: ‘ZnO-Doped BaTiO3–Na0.5Bi0.5TiO3–Nb2O5-based ceramics with temperature-stable high permittivity from −55°C to 375°C’, Mater. Lett., 2015, 138, pp. 228230.
    62. 62)
      • 62. Li, L., Chen, J., Guo, D., et al: ‘An ultra-broad working temperature dielectric material obtained with praseodymium doped BaTiO3–(Bi0.5Na0.5)TiO3–Nb2O5 based ceramics’, Ceram. Int., 2014, 40, (8), pp. 1253912543.
    63. 63)
      • 63. Xu, Q., Song, Z., Tang, W., et al: ‘Ultra-wide temperature stable dielectrics based on Bi0.5Na0.5TiO3–NaNbO3 system’, J. Am. Ceram. Soc., 2015, 98, (10), pp. 31193126.
    64. 64)
      • 64. Bridger, K., Cooke, A.V., Schulze, W.A.: ‘High-temperature dielectric materials and capacitors made therefrom’. U.S. Patent 7697263 B2, April 2010.
    65. 65)
      • 65. Dittmer, R., Jo, W., Damjanovic, D., et al: ‘Lead-free high-temperature dielectrics with wide operational range’, J. Appl. Phys., 2011, 109, (3), p. 034107.
    66. 66)
      • 66. Jia, W., Hou, Y., Zheng, M., et al: ‘High-temperature dielectrics based on (1−x)(0.94Bi0.5Na0.5TiO3–0.06BaTiO3)–xNaNbO3 system’, J. Alloys Compd., 2017, 724, pp. 306315.
    67. 67)
      • 67. Xu, Q., Liu, H., Song, Z., et al: ‘A new energy-storage ceramic system based on Bi0.5Na0.5TiO3 ternary solid solution’, J. Mater. Sci., Mater. Electron., 2015, 27, (1), pp. 322329.
    68. 68)
      • 68. Xu, Q., Liu, H., Zhang, L., et al: ‘Structure and electrical properties of lead-free Bi0.5Na0.5TiO3-based ceramics for energy-storage applications’, RSC Adv., 2016, 6, (64), pp. 5928059291.
    69. 69)
      • 69. Shi, J., Fan, H., Liu, X., et al: ‘Bi deficiencies induced high permittivity in lead-free BNBT–BST high-temperature dielectrics’, J. Alloys Compd., 2015, 627, pp. 463467.
    70. 70)
      • 70. Kruea-In, C., Rujijanagul, G., Zhu, F.Y., et al: ‘Relaxor behaviour of K0.5Bi0.5TiO3–BiScO3 ceramics’, Appl. Phys. Lett., 2012, 100, (20), p. 202904.
    71. 71)
      • 71. Zeb, A., Milne, S.J.: ‘High temperature dielectrics in the ceramic system K0.5Bi0.5TiO3–Ba(Zr0.2Ti0.8)O3–Bi(Zn2/3 Nb1/3)O3’, Ceram. Int., 2017, 43, (10), pp. 77247727.
    72. 72)
      • 72. Cheng, H., Du, H., Zhou, W., et al: ‘Bi(Zn2/3Nb1/3)O3–(K0.5Na0.5)NbO3 high-temperature lead-free ferroelectric ceramics with low capacitance variation in a broad temperature usage range’, J. Am. Ceram. Soc., 2013, 96, (3), pp. 833837.
    73. 73)
      • 73. Skidmore, T.A., Comyn, T.P., Milne, S.J.: ‘Dielectric and piezoelectric properties in the system: (1−x)[(Na0.5K0.5NbO3)0.93–(LiTaO3)0.07]–x[BiScO3]’, J. Am. Ceram. Soc., 2010, 93, (3), pp. 624626.
    74. 74)
      • 74. Zeb, A., Milne, S.J.: ‘Stability of high-temperature dielectric properties for (1–x)Ba0.8Ca0.2TiO3xBi(Mg0.5Ti0.5)O3 ceramics’, J. Am. Ceram. Soc., 2013, 96, (9), pp. 28872892.
    75. 75)
      • 75. Dittmer, R., Anton, E.M., Jo, W., et al: ‘A high-temperature-capacitor dielectric based on K0.5Na0.5NbO3-modified Bi1/2Na1/2TiO3–Bi1/2K1/2TiO3’, J. Am. Ceram. Soc., 2012, 95, (11), pp. 35193524.
    76. 76)
      • 76. Zhang, L., Wang, X., Liu, H., et al: ‘Structural and dielectric properties of BaTiO3–SrTiO3 ternary system ceramics’, J. Am. Ceram. Soc., 2010, 93, (4), pp. 10491055.
    77. 77)
      • 77. Muhammad, R., Khesro, A., Iqbal, Y.: ‘Temperature-stable high relative permittivity in Ca-doped Ba0.5Bi0.5Ti0.75Mg0.25O3 ceramics’, J. Mater. Sci., Mater. Electron., 2017, 28, (9), pp. 67636768.
    78. 78)
      • 78. Shannon, R.D.: ‘Dielectric polarizabilities of ions in oxides and fluorides’, J. Appl. Phys., 1993, 73, (1), pp. 348366.
    79. 79)
      • 79. Sun, Y., Liu, H., Hao, H., et al: ‘Structure property relationship in BaTiO3–Na0.5Bi0.5TiO3–Nb2O5–NiO X8R system’, J. Am. Ceram. Soc., 2015, 98, (5), pp. 15741579.
    80. 80)
      • 80. Sun, Y., Liu, H., Hao, H., et al: ‘The role of Co in the BaTiO3–Na0.5Bi0.5TiO3 based X9R ceramics’, Ceram. Int., 2015, 41, (1), pp. 931939.
    81. 81)
      • 81. Sun, Y., Liu, H., Hao, H., et al: ‘Effect of oxygen vacancy on electrical property of acceptor doped BaTiO3–Na0.5Bi0.5TiO3–Nb2O5 X8R systems’, J. Am. Ceram. Soc., 2016, 99, (9), pp. 30673073.
    82. 82)
      • 82. Li, L., Han, Y., Zhang, P., et al: ‘Synthesis and characterization of BaTiO3-based X9R ceramics’, J. Mater. Sci., 2009, 44, (20), pp. 55635568.
    83. 83)
      • 83. Hou, Y., Zhu, M., Gao, F., et al: ‘Effect of MnO2 addition on the structure and electrical properties of Pb(Zn1/3Nb2/3)0.20(Zr0.50Ti0.50)0.80O3 ceramics’, J. Am. Ceram. Soc., 2010, 87, (5), pp. 847850.
    84. 84)
      • 84. Hagemann, H., Ihrig, H.: ‘Valence change and phase stability of 3d-doped BaTiO3 annealed in oxygen and hydrogen’, Phys. Rev. B, 1979, 20, (20), pp. 38713878.
    85. 85)
      • 85. Yao, G., Wang, X., Li, L.: ‘Study on occupation behavior of Y2O3 in X8R nonreducible BaTiO3-based dielectric ceramics’, Jpn. J. Appl. Phys., 2011, 50, p. 121501.
    86. 86)
      • 86. Hennings, D.F.K.: ‘Dielectric materials for sintering in reducing atmospheres’, J. Eur. Ceram. Soc., 2001, 21, (10–11), pp. 16371642.
    87. 87)
      • 87. Albertsen, K., Hennings, D., Steigelmann, O.: ‘Donor-acceptor charge complex formation in barium titanate ceramics: role of firing atmosphere’, J. Electroceram., 1998, 2, (3), pp. 193198.
    88. 88)
      • 88. Smolenskii, G.A., Isupov, V.A., Agranovskaya, A.I., et al: ‘New ferroelectrics of complex composition. IV’, Sov. Phys.–Solid State, 1961, 2, (11), p. 3.
    89. 89)
      • 89. Reichmann, K., Feteira, A., Li, M.: ‘Bismuth sodium titanate based materials for piezoelectric actuators’, Materials, 2015, 8, (12), pp. 84678495.
    90. 90)
      • 90. Gorfman, S., Thomas, P.A.: ‘Evidence for a non-rhombohedral average structure in the lead-free piezoelectric material Na0.5Bi0.5TiO3’, J. Appl. Crystallogr., 2010, 43, (6), pp. 14091414.
    91. 91)
      • 91. Aksel, E., Forrester, J.S., Jones, J.L., et al: ‘Monoclinic crystal structure of polycrystalline Na0.5Bi0.5TiO3’, Appl. Phys. Lett., 2011, 98, (15), p. 152901.
    92. 92)
      • 92. Ma, C., Guo, H., Tan, X.: ‘A new phase boundary in (Bi1/2Na1/2)TiO3−BaTiO3 revealed via a novel method of electron diffraction analysis’, Adv. Funct. Mater., 2013, 23, (42), pp. 52615266.
    93. 93)
      • 93. Rödel, J., Jo, W., Seifert, K.T.P., et al: ‘Perspective on the development of lead-free piezoceramics’, J. Am. Ceram. Soc., 2009, 92, (6), pp. 11531177.
    94. 94)
      • 94. Rödel, J., Kounga, A.B.N., Weissenberger-Eibl, M., et al: ‘Development of a roadmap for advanced ceramics: 2010–2025’, J. Eur. Ceram. Soc., 2009, 29, (9), pp. 15491560.
    95. 95)
      • 95. Zhang, S.T., Kounga, A.B., Jo, W., et al: ‘High-strain lead-free antiferroelectric electrostrictors’, Adv. Mater., 2009, 21, (46), pp. 47164720.
    96. 96)
      • 96. Jo, W., Dittmer, R., Acosta, M., et al: ‘Giant electric-field-induced strains in lead-free ceramics for actuator applications – status and perspective’, J. Electroceram., 2012, 29, (1), pp. 7193.
    97. 97)
      • 97. Wang, K., Hussain, A., Jo, W., et al: ‘Temperature-dependent properties of (Bi1/2Na1/2)TiO3–(Bi1/2K1/2)TiO3–SrTiO3 lead-free piezoceramics’, J. Am. Ceram. Soc., 2012, 95, (7), pp. 22412247.
    98. 98)
      • 98. Zhang, H., Groh, C., Zhang, Q., et al: ‘Large strain in relaxor/ferroelectric composite lead-free piezoceramics’, Adv. Electron. Mater., 2015, 1, (6), p. 1500018.
    99. 99)
      • 99. Zhang, J., Pan, Z., Guo, F.F., et al: ‘Semiconductor/relaxor 0–3 type composites without thermal depolarization in Bi0.5Na0.5TiO3-based lead-free piezoceramics’, Nat. Commun., 2015, 6, p. 6615.
    100. 100)
      • 100. Liu, X., Tan, X.: ‘Giant strains in non-textured (Bi1/2Na1/2)TiO3-based lead-free ceramics’, Adv. Mater., 2016, 28, (3), pp. 574578.
    101. 101)
      • 101. Ma, C., Tan, X., Dulkin, E., et al: ‘Domain structure-dielectric property relationship in lead-free (1−x)(Bi1/2Na1/2)TiO3xBaTiO3 ceramics’, J. Appl. Phys., 2010, 108, (10), p. 104105.
    102. 102)
      • 102. Sakata, K., Masuda, Y.: ‘Ferroelectric and antiferroelectric properties of (Na0.5Bi0.5)TiO3–SrTiO3 solid solution ceramics’, Ferroelectrics, 1974, 7, (1), pp. 347349.
    103. 103)
      • 103. Dorcet, V., Trolliard, G., Boullay, P.: ‘Reinvestigation of phase transitions in Na0.5Bi0.5TiO3 By TEM. Part I: first order rhombohedral to orthorhombic phase transition’, Chem. Mater., 2008, 20, (15), pp. 50615073.
    104. 104)
      • 104. Trolliard, G., Dorcet, V.: ‘Reinvestigation of phase transitions in Na0.5Bi0.5TiO3 by TEM. Part II: second order orthorhombic to tetragonal phase transition’, Chem. Mater., 2008, 20, (15), pp. 50745082.
    105. 105)
      • 105. Jo, W., Schaab, S., Sapper, E., et al: ‘On the phase identity and its thermal evolution of lead free (Bi1/2Na1/2)TiO3–6 mol% BaTiO3’, J. Appl. Phys., 2011, 110, (7), p. 074106.
    106. 106)
      • 106. Li, Y., Chen, W., Zhou, J., et al: ‘Dielectric and piezoelectric properties of lead-free (Na0.5Bi0.5)TiO3–NaNbO3 ceramics’, Mater. Sci. Eng. B, 2004, 112, (1), pp. 59.
    107. 107)
      • 107. Wu, C.C., Yang, C.F.: ‘Effects of NaNbO3 concentration on the relaxor and dielectric properties of the lead-free (Na0.5Bi0.5)TiO3 ceramics’, Cryst. Eng. Comm., 2013, 15, (44), p. 9097.
    108. 108)
      • 108. König, J., Spreitzer, M., Suvorov, D.: ‘Influence of the synthesis conditions on the dielectric properties in the Bi0.5Na0.5TiO3–KTaO3 system’, J. Eur. Ceram. Soc., 2011, 31, (11), pp. 19871995.
    109. 109)
      • 109. Takenaka, T., Maruyama, K.I., Sakata, K.: ‘(Bi1/2Na1/2)TiO3–BaTiO3 system for lead-free piezoelectric ceramics’, Jpn. J. Appl. Phys., 1991, 30, (9B), pp. 22362239.
    110. 110)
      • 110. Ma, C., Tan, X., Kleebe, H.J.: ‘In situ transmission electron microscopy study on the phase transitionsin lead-free (1−x)(Bi1/2Na1/2)TiO3xBaTiO3 ceramics’, J. Am. Ceram. Soc., 2011, 94, (11), pp. 40404044.
    111. 111)
      • 111. Zhang, S.T., Kounga, A.B., Aulbach, E., et al: ‘Giant strain in lead-free piezoceramics Bi0.5Na0.5TiO3–BaTiO3–K0.5Na0.5NbO3 system’, Appl. Phys. Lett., 2007, 91, (11), p. 112906.
    112. 112)
      • 112. Jo, W., Granzow, T., Aulbach, E., et al: ‘Origin of the large strain response in (K0.5Na0.5)NbO3-modified (Bi0.5Na0.5)TiO3–BaTiO3 lead-free piezoceramics’, J. Appl. Phys., 2009, 105, (9), p. 094102.
    113. 113)
      • 113. Zang, J., Li, M., Sinclair, D.C., et al: ‘Impedance spectroscopy of (Bi0.5Na0.5)TiO3–BaTiO3 ceramics modified with (K0.5Na0.5)NbO3’, J. Am. Ceram. Soc., 2014, 97, (5), pp. 15231529.
    114. 114)
      • 114. Chao, L., Hou, Y., Zheng, M., et al: ‘High dense structure boosts stability of antiferroelectric phase of NanbO3 polycrystalline ceramics’, Appl. Phys. Lett., 2016, 108, (21), p. 212902.
    115. 115)
      • 115. Chao, L., Hou, Y., Zheng, M., et al: ‘Macroscopic ferroelectricity and piezoelectricity in nanostructured NaNbO3 ceramics’, Appl. Phys. Lett., 2017, 110, (12), p. 122901.
    116. 116)
      • 116. Xu, Q., Li, T., Hao, H., et al: ‘Enhanced energy storage properties of NaNbO3 modified (Bi0.5Na0.5)TiO3 based ceramics’, J. Eur. Ceram. Soc., 2015, 35, (2), pp. 545553.
    117. 117)
      • 117. Jo, W., Erdem, E., Eichel, R.A., et al: ‘Effect of Nb-donor and Fe-acceptor dopants in (Bi1/2Na1/2)TiO3–BaTiO3–(K0.5Na0.5)NbO3 lead-free piezoceramics’, J. Appl. Phys., 2010, 108, (1), p. 014110.
    118. 118)
      • 118. Zheng, M.P., Hou, Y.D., Xie, F.Y., et al: ‘Effect of valence state and incorporation site of cobalt dopants on the microstructure and electrical properties of 0.2PZN–0.8PZT ceramics’, Acta Mater., 2013, 61, (5), pp. 14891498.
    119. 119)
      • 119. Hou, Y.D., Cui, B., Zhu, M.K., et al: ‘Structure and electrical properties of Mn-modified Pb((Zn1/3Nb2/3)0.20(Zr0.50Ti0.50)0.80)O3 ceramics sintered in a protective powder atmosphere’, Mater. Sci. Eng. B, 2004, 111, (1), pp. 7781.
    120. 120)
      • 120. Zhu, M.K., Lu, P.X., Hou, Y.D., et al: ‘Effects of Fe2O3 addition on microstructure and piezoelectric properties of 0.2PZN–0.8PZT ceramics’, J. Mater. Res., 2011, 20, (10), pp. 26702675.
    121. 121)
      • 121. Sung, Y.S., Kim, J.M., Cho, J.H., et al: ‘Effects of Bi nonstoichiometry in (Bi0.5+xNa)TiO3 ceramics’, Appl. Phys. Lett., 2011, 98, (1), p. 012902.
    122. 122)
      • 122. Elkechai, O., Manier, M., Mercurio, J.P.: ‘Na0.5Bi0.5TiO3–K0.5Bi0.5TiO3 (NBT-KBT) system: a structural and electrical study’, Phys. Status Solidi, 2010, 157, (2), pp. 499506.
    123. 123)
      • 123. Sasaki, A., Chiba, T., Mamiya, Y., et al: ‘Dielectric and piezoelectric properties of (Bi0.5Na0.5)TiO3 (Bi0.5K0.5)TiO3 systems’, Jpn. J. Appl. Phys., 1999, 38, (9), p. 5564.
    124. 124)
      • 124. Seifert, K.T.P., Jo, W., Rödel, J.: ‘Temperature-insensitive large strain of (Bi1/2Na1/2)TiO3–(Bi1/2K1/2)TiO3–(K0.5Na0.5)NbO3 lead-free piezoceramics’, J. Am. Ceram. Soc., 2010, 93, (2), pp. 13921396.
    125. 125)
      • 125. Anton, E.M., Jo, W., Trodahl, J., et al: ‘Effect of K0.5Na0.5NbO3 on properties at and of the morphotropic phase boundary in Bi1/2Na1/2TiO3–Bi1/2K1/2TiO3 ceramics’, Jpn. J. Appl. Phys., 2011, 50, (5), p. 055802.
    126. 126)
      • 126. Wada, T., Fukui, A., Matsuo, Y.: ‘Preparation of (K0.5Na0.5)NbO3 ceramics by polymerized complex method and their properties’, Jpn. J. Appl. Phys., 2002, 41, (Part 1, No. 11B), pp. 70257028.
    127. 127)
      • 127. Hou, Y., Zhu, M., Hou, L., et al: ‘Synthesis and characterization of lead-free K0.5Bi0.5TiO3 ferroelectrics by sol–gel technique’, J. Cryst. Growth, 2005, 273, (3–4), pp. 500503.
    128. 128)
      • 128. Du, H., Li, Z., Tang, F., et al: ‘Preparation and piezoelectric properties of (K0.5Na0.5)NbO3 lead-free piezoelectric ceramics with pressure-less sintering’, Mater. Sci. Eng. B, 2006, 131, (1–3), pp. 8387.
    129. 129)
      • 129. Yang, Z., Du, H., Qu, S., et al: ‘Significantly enhanced recoverable energy storage density in potassium–sodium niobate-based lead free ceramics’, J. Mater. Chem. A, 2016, 4, (36), pp. 1377813785.
    130. 130)
      • 130. Shao, T., Du, H., Ma, H., et al: ‘Potassium–sodium niobate based lead-free ceramics: novel electrical energy storage materials’, J. Mater. Chem. A, 2017, 5, (2), pp. 554563.
    131. 131)
      • 131. Hu, B., Zhu, M., Guo, J., et al: ‘Origin of relaxor behavior in K1/2Bi1/2TiO3–Bi(Mg1/2Ti1/2)O3 investigated by electrical impedance spectroscopy’, J. Am. Ceram. Soc., 2016, 99, (5), pp. 16371644.
    132. 132)
      • 132. Zhang, M.H., Wang, K., Du, Y.J., et al: ‘High and temperature-insensitive piezoelectric strain in alkali niobate lead-free perovskite’, J. Am. Chem. Soc., 2017, 139, (10), pp. 38893895.
    133. 133)
      • 133. Xu, K., Li, J., Lv, X., et al: ‘Superior piezoelectric properties in potassium–sodium niobate lead-free ceramics’, Adv. Mater., 2016, 28, (38), pp. 85198523.
    134. 134)
      • 134. Gao, R., Chu, X., Huan, Y., et al: ‘A study on (K, Na) NbO3 based multilayer piezoelectric ceramics micro speaker’, Smart Mater. Struct., 2014, 23, (10), p. 105018.
    135. 135)
      • 135. Nagata, H., Tabuchi, K., Takenaka, T.: ‘Fabrication and electrical properties of multilayer ceramic actuator using lead-free (Bi1/2K1/2)TiO3’, Jpn. J. Appl. Phys., 2013, 52, (9S1), p. 09KD05.
    136. 136)
      • 136. Kim, M.S., Jeon, S., Lee, D.S., et al: ‘Lead-free NkN-5LT piezoelectric materials for multilayer ceramic actuator’, J. Electroceram., 2008, 23, (2–4), pp. 372375.
    137. 137)
      • 137. Gao, R., Chu, X., Huan, Y., et al: ‘Investigation on co-fired multilayer KNN-based lead-free piezoceramics’, Phys. Status Solidi A, 2014, 211, (10), pp. 23782383.
    138. 138)
      • 138. Qu, B., Du, H., Yang, Z.: ‘Lead-free relaxor ferroelectric ceramics with high optical transparency and energy storage ability’, J. Mater. Chem. C, 2016, 4, (9), pp. 17951803.
    139. 139)
      • 139. Qu, B., Du, H., Yang, Z., et al: ‘Large recoverable energy storage density and low sintering temperature in potassium-sodium niobate-based ceramics for multilayer pulsed power capacitors’, J. Am. Ceram. Soc., 2017, 100, (4), pp. 15171526.
    140. 140)
      • 140. Popper, P., Ingles, T.A.: ‘Structure and electrical properties of Bi4Ti3O12 and its application in dielectrics’, Trans. Br. Ceram. Soc., 1957, 56, p. 9.
    141. 141)
      • 141. Buhrer, C.F.: ‘Some properties of bismuth perovskites’, J. Chem. Phys., 1962, 36, (3), pp. 798803.
    142. 142)
      • 142. Wu, J., Xiao, D., Zhu, J.: ‘Potassium-sodium niobate lead-free piezoelectric materials: past, present, and future of phase boundaries’, Chem. Rev, 2015, 115, (7), pp. 25592595.
    143. 143)
      • 143. Wang, X., Wu, J., Xiao, D., et al: ‘Giant piezoelectricity in potassium-sodium niobate lead-free ceramics’, J. Am. Chem. Soc., 2014, 136, (7), pp. 29052910.
    144. 144)
      • 144. Du, H., Zhou, W., Luo, F., et al: ‘High Tm lead-free relaxor ferroelectrics with broad temperature usage range: 0.04BiScO3−0.96(K0.5Na0.5)NbO3’, J. Appl. Phys., 2008, 104, (4), p. 044104.
    145. 145)
      • 145. Chen, X., Chen, J., Ma, D., et al: ‘High relative permittivity, low dielectric loss and good thermal stability of novel (K0.5Na0.5)NbO3–Bi(Zn0.75W0.25)O3 solid solution’, Mater. Lett., 2015, 145, pp. 247249.
    146. 146)
      • 146. Zhu, F., Skidmore, T.A., Bell, A.J., et al: ‘Diffuse dielectric behaviour in Na0.5K0.5NbO3–LiTaO3–BiScO3 lead-free ceramics’, Mater. Chem. Phys., 2011, 129, (1–2), pp. 411417.
    147. 147)
      • 147. Skidmore, T.A., Comyn, T.P., Bell, A.J., et al: ‘Phase diagram and structure–property relationships in the lead-free piezoelectric system: Na0.5K0.5NbO3–LiTaO3’, IEEE Ttrans. Ultrason. Ferroelectr., 2011, 58, (9), pp. 18191825.
    148. 148)
      • 148. Wang, K., Li, J.F.: ‘Domain engineering of lead-free Li-modified (K,Na)NbO3 polycrystals with highly enhanced piezoelectricity’, Adv. Funct. Mater., 2010, 20, (12), pp. 19241929.
    149. 149)
      • 149. Zuo, R., Fu, J., Lv, D., et al: ‘Antimony tuned rhombohedral–orthorhombic phase transition and enhanced piezoelectric properties in sodium potassium niobate’, J. Am. Ceram. Soc., 2010, 93, (9), pp. 27832787.
    150. 150)
      • 150. Lv, Y.G., Wang, C.L., Zhang, J.L., et al: ‘Tantalum influence on physical properties of (K0.5Na0.5)(Nb1−xTax)O3 ceramics’, Mater. Res. Bull., 2009, 44, (2), pp. 284287.
    151. 151)
      • 151. Su, C., Hao, H., Xu, Q., et al: ‘Manufacture and dielectric properties of X9R Bi-based lead-free multilayer ceramic capacitors with AgPd inner electrodes’, J. Mater. Sci., Mater Electron., 2016, 27, (6), pp. 61406149.
    152. 152)
      • 152. Yoon, D.H.: ‘Tetragonality of barium titanate powder for a ceramic capacitor application’, J. Ceram. Proc. Res., 2006, 7, (4), pp. 343354.
    153. 153)
      • 153. Chen, I.W., Wang, X.H.: ‘Sintering dense nanocrystalline ceramics without final-stage grain growth’, Nature, 2000, 404, (6774), p. 168.
    154. 154)
      • 154. Karaki, T., Yan, K., Adachi, M.: ‘Barium titanate piezoelectric ceramics manufactured by two-step sintering’, Jpn. J. Appl. Phys., 2007, 46, (10B), pp. 70357038.
    155. 155)
      • 155. Zheng, T., Wu, J.: ‘Enhanced piezoelectricity over a wide sintering temperature (400–1050°C) range in potassium sodium niobate-based ceramics by two step sintering’, J. Mater. Chem. A, 2015, 3, (13), pp. 67726780.
    156. 156)
      • 156. Huan, Y., Wang, X., Fang, J., et al: ‘Grain size effects on piezoelectric properties and domain structure of BaTiO3 ceramics prepared by two-step sintering’, J. Am. Ceram. Soc., 2013, 96, (11), pp. 33693371.
    157. 157)
      • 157. Gong, H., Wang, X., Zhang, S., et al: ‘Grain size effect on electrical and reliability characteristics of modified fine-grained BaTiO3 ceramics for MLCCs’, J. Eur. Ceram. Soc., 2014, 34, (7), pp. 17331739.
    158. 158)
      • 158. Buessem, W.R., Cross, L.E., Goswami, A.K.: ‘Effect of two-dimensional pressure on the permittivity of fine- and coarse-grained barium titanate’, J. Am. Ceram. Soc., 1966, 49, (1), pp. 3639.
    159. 159)
      • 159. Buessem, W.R., Cross, L.E., Goswami, A.K.: ‘Phenomenological theory of high permittivity in fine-grained barium titanate’, J. Am. Ceram. Soc., 1992, 75, (11), pp. 3336.
    160. 160)
      • 160. Ghosh, D., Sakata, A., Carter, J., et al: ‘Domain wall displacement is the origin of superior permittivity and piezoelectricity in BaTiO3 at intermediate grain sizes’, Adv. Funct. Mater., 2014, 24, (7), pp. 885896.
    161. 161)
      • 161. Huan, Y., Wang, X., Fang, J., et al: ‘Grain size effect on piezoelectric and ferroelectric properties of BaTiO3 ceramics’, J. Eur. Ceram. Soc., 2014, 34, (5), pp. 14451448.
    162. 162)
      • 162. Arlt, G., Hennings, D., With, G.D.: ‘Dielectric properties of fine-grained barium titanate ceramics’, J. Appl. Phys., 1985, 58, (4), pp. 16191625.
    163. 163)
      • 163. Emelyanov, A.Y., Pertsev, N.A., Hoffmann-Eifert, S., et al: ‘Grain-boundary effect on the Curie–Weiss law of ferroelectric ceramics and polycrystalline thin films: calculation by the method of effective medium’, J. Electroceram., 2002, 9, (1), pp. 516.
    164. 164)
      • 164. Li, B., Wang, X., Li, L., et al: ‘Dielectric properties of fine-grained BaTiO3 prepared by spark-plasma-sintering’, Mater. Chem. Phys., 2004, 83, (1), pp. 2328.
    165. 165)
      • 165. Ping, H., Henson, P., Johnson, R.W.: ‘Packaging technology for electronic applications in harsh high-temperature environments’, IEEE Trans. Ind. Electron., 2011, 58, (7), pp. 26732682.
    166. 166)
      • 166. Watson, J., Castro, G.: ‘High-temperature electronics pose design and reliability challenges’, Analog Dialogue, 2012, 46, (2), pp. 39.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-nde.2017.0003
Loading

Related content

content/journals/10.1049/iet-nde.2017.0003
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address