access icon free Assessment of acaricidal activity of nanoscale ZnO encapsulated piperine formulation against Rhipicephalus microplus

This study aims to synthesise and evaluate the acaricidal activity of nanoscale zinc oxide piperine formulation (NZPF) against Rhipicephalus microplus ticks. NZPF was prepared by using zinc oxide nanoparticles (ZnONPs) and piperine by employing encapsulation technique; characterised by UV spectroscopy, Fourier transformed infrared analysis, X-ray diffraction, dynamic light scattering, zetapotential and scanning electron microscopy. Acaricidal activity of the NZPF on R. microplus was evaluated using larval packet test (LPT) and adult immersion test (AIT). LPT against R. microplus larvae showed an LC50 at 1 mg/l for NZPF followed by 2 and 3 mg/l for ZnONPs and piperine, respectively. AIT against R. microplus showed an LC50 at concentration of 3 mg/l for NZPF followed by 6 mg/l for ZnONPs and 7 mg/l for piperine. In both LPT and AIT, LC50 values of ZnONPs and NZPF were significantly lower compared to deltamethrin. NZPF showed significant ovulation inhibitory activity with lower IC50 and IC99 values compared to ZnONPs and piperine. NZPF has been proved to be the better alternative to routine chemical acaricides for control of tick infestation of cattle in the wake of acaricidal resistance, but safety issues need to be addressed before clinical application.

Inspec keywords: nanomedicine; X-ray diffraction; agricultural safety; Fourier transform infrared spectra; biotechnology; light scattering; electrokinetic effects; pest control; nanoparticles; zinc compounds; agricultural engineering; molecular biophysics; ultraviolet spectra; scanning electron microscopy; encapsulation

Other keywords: ZnO; acaricidal resistance; AIT; scanning electron microscopy; X-ray diffraction; adult immersion test; larval packet test; Fourier transformed infrared analysis; Rhipicephalus microplus ticks; ZnONP; zinc oxide nanoparticles; LPT; NZPF; zetapotential; dynamic light scattering; acaricidal activity; UV spectroscopy; nanoscale zinc oxide piperine formulation

Subjects: Biotechnology industry; Agriculture; Industrial processes; Health and safety aspects; Testing; Packaging

References

    1. 1)
      • 7. Pereira, S.G., Araújo, S.A., Guilhon, G.M.S.P., et al: ‘In vitro acaricidal activity of Crescentia cujete L. Fruit pulp against Rhipicephalus microplus’, Parasitol. Res., 2017, 116, (5), pp. 14871493.
    2. 2)
      • 27. Parte, S.G., Patil, R.D., Patil, M.A., et al: ‘Utilization of herbals for the managements of cattle ticks’, Int. J. Curr. Microbiol. App. Sci., 2014, 3, (10), pp. 228232.
    3. 3)
      • 10. Balan, B., Balasubramanian, M., Baskaralingam, V.: ‘In vitro acaricidal activity of ethno veterinary plants and green synthesis of zinc oxide nanoparticles against Rhipicephalus (Boophilus) microplus’, Vet. Parasitol., 2015, 216, pp. 93100.
    4. 4)
      • 16. Abdullah, S., Yadav, C.L., Vatsya, S.: ‘Status of synthetic pyrethroid susceptibility in Rhipicephalus (Boophilus) microplus collected from various regions in and around Pantnagar (Uttarakhand)’, Pantnagar J. Res., 2013, 11, (1), pp. 124128.
    5. 5)
      • 39. Mathur, A., Kushwaha, A., Dalakoti, V., et al: ‘Green synthesis of silver nanoparticles using medicinal plant and its characterization’, Der. Pharmacia. Sinica., 2014, 5, pp. 118122.
    6. 6)
      • 55. Sharma, A.K., Kumar, R., Kumar, S., et al: ‘Deltamethrin and cypermethrin resistance status of Rhipicephalus (Boophilus) microplus collected from six agro-climatic regions of India’, J. Veterinary Parasitol., 2012, 188, pp. 337345.
    7. 7)
      • 6. Mondal, D.B., Sarma, K., Saravanan, M.: ‘Upcoming of the integrated tick control program of ruminants with special emphasis on livestock farming system in India’, Ticks Tick-Borne Dis., 2013, 4, (1), pp. 110.
    8. 8)
      • 32. Pan, K., Luo, Y., Gan, Y., et al: ‘Ph-driven encapsulation of curcumin in selfassembled casein nanoparticles for enhanced dispersibility and bioactivity’, J. Soft Matter., 2014, 10, pp. 68206830.
    9. 9)
      • 18. Gaur, R.S., Sangwan, A.K., Sangwan, N., et al: ‘Acaricide resistance in Rhipicephalus (Boophilus) microplus and Hyalomma anatolicum collected from Haryana and Rajasthan states of India’, Exp. Appl. Acarol., 2016, 69, p. 487.
    10. 10)
      • 24. Rattan, R.S.: ‘Mechanism of action of insecticidal secondary metabolites of plant origin’, Crop Protection, 2010, 29, pp. 913920.
    11. 11)
      • 25. Ilham, M.O., Razzig, A.A.A., Elhaj, M.T., et al: ‘Acaricidal activity of crude extract of Annona Squamosa against Hyalomma Anatolicum (ixodoidea: ixodidae)’, Altern Integr Med., 2014, 3, p. 173.
    12. 12)
      • 4. Kaur, D., Jaiswal, K., Mishra, S.: ‘Page studies on prevalence of ixodid ticks infesting cattle and their control by plant extracts’, J. Pharm. Biol. Sci., 2015, 10, pp. 0111.
    13. 13)
      • 12. Vatsya, S., Yadav, C.L.: ‘Evaluation of acaricide resistance mechanisms in field populations of Rhipicephalus (Boophilus) microplus collected from India’, Int. J. Acarol., 2011, 37, (5), pp. 405410.
    14. 14)
      • 23. Tak, J.H., Kim, H.K., Lee, S.H., et al: ‘Acaricidal activities of paeonol and benzoic acid from paeonia suffruticosa root bark and monoterpenoids against tyrophagus putrescentiae (acari: acaridae)’, Pest Manag Sci., 2006, 62, pp. 551557.
    15. 15)
      • 9. Horak, I.G., Camicas, J.L., Keirans, J.E.: ‘The argasidae, ixodidae and nuttalliellidae (Acari: Ixodida): a world list of valid tick names’, Exp. Appl. Acarol., 2002, 28, pp. 2754.
    16. 16)
      • 8. Godara, R., Parveen, S., Katoch, R., et al: ‘Acaricidal activity of ethanolic extract of Artemisia absinthium against hyalomma anatolicum ticks’, Exp. Appl. Acarol., 2014, 65, pp. 141148.
    17. 17)
      • 26. Waller, P.J., Knox, M.R., Faedo, M.: ‘The potentialof nematophagous fungi to control the free-livingstages of nematode parasites of sheep: feeding andblock studies with Duddingtonia flagrans’, Vet. Parasitol., 2001, 102, pp. 321330.
    18. 18)
      • 5. Minjauw, B., McLeod, A.: ‘Tick-borne diseases and poverty. The impact of ticks and tick-borne diseases on the livelihood of small scale and marginallivestock owners in India and eastern and southern Africa’. DFID Animal Health Programme, Centre for Trop. Vet. Med., 2003, pp. 5960.
    19. 19)
    20. 20)
      • 38. Elumalai, K., Velmurugan, S., Ravi, S., et al: ‘Green synthesis of zinc oxide nanoparticles using Moringa oleifera leaf extract and evaluation of its antimicrobial activity’, Spectrochim. Acta A: Mol. Biomol. Spectrosc., 2015, 143, pp. 158164.
    21. 21)
      • 48. Supraja, N., Prasad, T.N.V.K.V., Krishna, T.G., et al: ‘Synthesis, characterization, and evaluation of the antimicrobial efficacy of Boswellia ovalifoliolata stem bark-extract-mediated zinc oxide nanoparticles’, Appl Nanosci., 2016, 6, pp. 581590.
    22. 22)
      • 15. Singh, N.K., Jyoti, , Vemu, B., et al: ‘Acaricidal activity of Cymbopogon winterianus, Vitex negundo and Withania somnifera against synthetic pyrethroid resistant rhiphicephalus (Boophilus) microplus’, Parasitol. Res., 2014, 113, (1), pp. 341350, https://dx.doi.org/10.1007/s00436-013-3660-4.
    23. 23)
      • 50. Ashtaputre, S.S., Dephpande, A., Marathe, S., et al: ‘Synthesis and analysis of ZnO and CdSe nanoparticles’, Pramonna J. Phys., 2005, 65, pp. 615620.
    24. 24)
      • 57. Singh, N.K., Saini, S.P.S., Singh, H., et al: ‘In vitro assessment of the acaricidal activity of Piper longum, Piper nigrum, and Zingiber officinale extracts against hyalomma anatolicum ticks’, Exp Appl Acarol., 2017, 71, p. 303.
    25. 25)
      • 22. Kumar, S.S., Rayulu, V.C., Rao, K.S., et al: ‘Acaricidal resistance in Rhipicephalus (Boophilus) microplus ticks infesting cattle of andhra pradesh’, J. Entomol. Zoology Studies., 2017, 5, (6), pp. 580584.
    26. 26)
      • 40. Shankar, S.S., Rai, A., Ahmad, A., et al: ‘Rapid synthesis of Au, Ag, and bimetallic Au core–Ag shell nanoparticles using neem (Azadirachta indica) leaf broth’, J. Colloid. Interface. Sci., 2004, 275, pp. 496502.
    27. 27)
      • 28. Chopra, B., Dhingra, A.K., Kapoor, R.P., et al: ‘Piperine and its various physicochemical and biological aspects: a review’, Open Chem., 2016, 3, pp. 7596.
    28. 28)
      • 17. Pradeep, B.S., Renukaprasad, C., Souza, P.E.D.: ‘Evaluation of the commonly used acaricides against different stages of the cattle tick Boophilus microplus by using different in vitro tests’, Indian J. Anim. Res., 2012, 46, (3), pp. 248252.
    29. 29)
      • 52. Wang, H., Wick, R.L., Xing, B.: ‘Toxicity of nanoparticulate and bulk ZnO, Al2O3 and TiO2 to the nematode caenorhabditis elegans’, Environ. Pollut.., 2009, 157, pp. 11711177.
    30. 30)
      • 46. Revina, A.A., Oksentyuk, E.V., Fenin, A.A.: ‘Synthesis and properties of zinc nanoparticles: the role and prospects of radiation chemistry in the development of modern nanotechnology’, Prot. Met., 2007, 43, pp. 613618.
    31. 31)
      • 11. Kirthi, A.V., Rahuman, A.A., Rajakumar, G., et al: ‘Acaricidal, pediculocidal and larvicidal activity of synthesized ZnO nanoparticles using wet chemical route against blood feeding parasites’, Parasitol. Res., 2011, 109, (2), pp. 461472.
    32. 32)
      • 56. Rosario-Cruz, R., Guerrero, F.D., Miller, R.J., et al: ‘Molecular survey of pyrethroid resistance mechanisms in Mexican field populations of Rhipicephalus (Boophilus) microplus’, Parasitol. Res., 2009, 105, pp. 11451153.
    33. 33)
      • 1. Benelli, G., Pavela, R., Canale, A., et al: ‘Tick repellents and acaricides of botanical origin: a green roadmap to control tick-borne diseases?’, Parasitol. Res., 2016, 115, (7), pp. 25452560.
    34. 34)
      • 13. Mekonnen, S., Bryson, N.R., Fourie, L.J., et al: ‘Acaricide resistance profiles of single and multi host ticks from communal and commercial farming areas in the Eastern Cape and North-West provinces of South Africa’, OnderstepoortJ. Vet. Res., 2002, 69, pp. 99105.
    35. 35)
      • 14. George, J.E., Pound, J.M., Davey, R.B.: ‘Chemical control of ticks on cattle and the resistance of these parasites to acaricides’, Vet.Parasitol., 2004, 129, pp. 353366.
    36. 36)
      • 33. Zheng, M., Gong, P., Zheng, C., et al: ‘Lipid-polymer nanoparticles for folate-receptortargeting delivery of doxorubicin’, Nanosci Nanotechnol., 2015, 15, (7), pp. 47924798.
    37. 37)
      • 36. Ramyadevi, J., Jeyasubramanian, K., Marikani, A., et al: ‘Copper nanoparticles synthesized by polyol process used to control hematophagous parasites’, Parasitol. Res., 2011, 109, pp. 14031415.
    38. 38)
      • 34. Balan, B., Balasubramanian, M., Baskaralingam, V.: ‘Invitro acaricidal activity of ethnoveterinary plants and green synthesis of zinc oxide nanoparticles against Rhipicephalus (Boophilus) microplus’, Vet. Parasitol., 2015, 216, pp. 93100.
    39. 39)
      • 53. Ahamed, M., Akhtar, M.J., Raja, M., et al: ‘ZnO nanorod-induced apoptosis in human alveolar adenocarcinoma cells via p53, survivin and bax/bcl-2 pathways: role of oxidative stress’, Nanomed., 2011, 7, (6), pp. 904913.
    40. 40)
      • 37. Bala, N., Saha, S., Chakraborty, M., et al: ‘Green synthesis of zinc oxide nanoparticles using Hibiscus subdariffa leaf extract: effect of temperature on synthesis, anti-bacterial activity and anti-diabetic activity’, Royal Soc. Chem., 2015, 5, pp. 49935003.
    41. 41)
      • 41. Cullity, B.D.: ‘Elements of X-ray diffraction’ (AddisonWesley, Reading, MA, 1978, 2nd edn.), p. 102.
    42. 42)
      • 54. Kumar, A., Pandey, A.K., Singh, S.S., et al: ‘Engineered ZnO and TiO2 nanoparticles induce oxidative stress and DNA damage leading to reduced viability of Escherichia coli’, Free Radical Biol. Med., 2011, 51, pp. 18721881.
    43. 43)
      • 29. Gorgani, L., Mohammadi, M., Najafpour, G.D., et al: ‘Piperine-the bioactive compound of black pepper: from isolation to medicinal formulations’, Food Sci. Food Safety., 2017, 16, pp. 124140.
    44. 44)
      • 49. Kumar, P., Walia, Y.K.: ‘Synthesis and structural properties of zinc oxide nano particles (ZnO NPs): A review’, Asian J. Adv. Basic Sci., 2014, 2, (3), pp. 3949.
    45. 45)
      • 20. Singh, N.K., Gelot, I.S., Jyoti, , et al: ‘Detection of amitraz resistance in Rhipicephalus (Boophilus) microplus from north Gujarat’, India.J. Parasitic Dis., 2015, 39, (1), pp. 4952, https://dx.doi.org/10.1007%2Fs12639-013-0280-y.
    46. 46)
      • 42. FAO (2004) Food and Agriculture Organization of the United Nations: ‘Guidelines Resistance Management Integrated Parasite Control Ruminants, Module 1:56’ (Animal Production and Health Division, FAO, Rome, 2004), pp. 2577.
    47. 47)
      • 19. Ravindran, R., Sunil, A.R., Sanis, J., et al: ‘Comparison of in vitro acaricidal effects of commercial preparations of cypermethrin and fenvalerate against R. (B.) annulatus’, Springer Plus, 2014, 3, p. 90.
    48. 48)
      • 21. Ghosh, S., Kumar, R., Nagar, G., et al: ‘Survey of acaricides resistance status of Rhipicephalus (Boophilus) microplus collected from selected placesof bihar, an eastern state of India’, Ticks Tick-Borne Dis., 2015, 6, (5), pp. 668675.
    49. 49)
      • 43. Soulsby, E.J.L.: ‘Helminths, arthropods and protozoa of domesticated animals’ (Bailliere Tindall and Cassel Ltd., London, 1982, 7th edn.).
    50. 50)
      • 3. Rehman, A., Nijhof, A.M., Louis, C., et al: ‘Distribution of ticks infesting ruminants and risk factors associated with high tick prevalence in livestock farms in the semiarid and arid agro-ecological zones of Pakistan’, Parasit. Vectors, 2017, 10, p. 90.
    51. 51)
      • 31. Gao, S., Hu, M.: ‘Bioavailability challenges associated with development of anti-cancer phenolics’, Mini-Rev. Med. Chem., 2010, 10, pp. 550567.
    52. 52)
      • 45. Abbott, W.S..: ‘Classic paper: abbott's formula. A method of computing the effectiveness of an insecticide’, J. Am. Mosq. Control Assoc., 1987, 3, (2), pp. 302303.
    53. 53)
      • 44. Walker, A.: ‘The arthropods of humans and domestic animals’ (Centre for Tropical Veterinary Medicine, University of Edinburgh, London, 1994).
    54. 54)
      • 35. Rajakumar, G., Rahuman, A.A., Jayaseelan, C., et al: ‘Solanum trilobatum extract-mediated synthesis of titanium dioxide nanoparticles to control Pediculus humanus capitis, Hyalomma anatolicum anatolicum and Anopheles subpictus’, Parasitol. Res., 2013, 113, (2), pp. 469479.
    55. 55)
      • 47. Sindhura, K.S., Prasad, T.N.V.K.V., Selvam, P., et al: ‘Synthesis, characterization and evaluation of effect of phytogenic zinc nanoparticles on soil exo-enzymes’, Appl Nanosci., 2014, 4, pp. 819827.
    56. 56)
      • 30. Chagas, A.C.S., de Barros, L.D., Continguiba, F., et al: ‘In vitro efficacy of plant extracts and synthesized substances on Rhipicephalus (Boophilus) microplus. (Acari: Ixodidae)’, Parasitol. Res., 2012, 110, pp. 295303.
    57. 57)
      • 51. Yedurkar, S., Maurya, C., Mahanwar, P.: ‘Biosynthesis of zinc oxide nanoparticles using ixora Coccinea leaf extract-A green approach’, Open J. Synthesis Theory. Appl., 2016, 5, pp. 114.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-nbt.2020.0159
Loading

Related content

content/journals/10.1049/iet-nbt.2020.0159
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading