access icon free Highly selective sensor for the detection of Hg2+ ions using homocysteine functionalised quartz crystal microbalance with cross-linked pyridinedicarboxylic acid

This study reports an insightful portable vector network analyser (VNA)-based measurement technique for quick and selective detection of Hg2+ ions in nanomolar (nM) range using homocysteine (HCys)-functionalised quartz-crystal-microbalance (QCM) with cross-linked-pyridinedicarboxylic acid (PDCA). The excessive exposure to mercury can cause damage to many human organs, such as the brain, lungs, stomach, and kidneys, etc. Hence, the authors have proposed a portable experimental platform capable of achieving the detection in 20–30 min with a limit of detection (LOD) 0.1 ppb (0.498 nM) and a better dynamic range (0.498 nM–6.74 mM), which perfectly describes its excellent performance over other reported techniques. The detection time for various laboratory-based techniques is generally 12–24 h. The proposed method used the benefits of thin-film, nanoparticles (NPs), and QCM-based technology to overcome the limitation of NPs-based technique and have LOD of 0.1 ppb (0.1 μg/l) for selective Hg2+ ions detection which is many times less than the World Health Organization limit of 6 μg/l. The main advantage of the proposed QCM-based platform is its portability, excellent repeatability, millilitre sample volume requirement, and easy process flow, which makes it suitable as an early warning system for selective detection of mercury ions without any costly measuring instruments.

Inspec keywords: chemical sensors; microsensors; network analysers; nanoparticles; quartz crystal microbalances; portable instruments; polymers; mercury (metal); nanosensors; thin film sensors; chemical variables measurement

Other keywords: mercury ion detection; LOD; nanoparticles; World Health Organization; portable vector network analyser-based measurement technique; homocysteine-functionalised quartz crystal microbalance; time 20.0 min to 30.0 min; NP-based technique; QCM-based microelectromechanical system technology; WHO; cross-linked pyridinedicarboxylic acid; mental retardation; HCys; laboratory-based techniques; limit of detection; PDCA; Hg; portable experimental platform; homocysteine functionalised quartz crystal microbalance; time 12.0 hour to 24.0 hour; Hunter–Russell syndrome

Subjects: Network and spectrum analysers; Chemical sensors; Bench and portable instruments; Sensing and detecting devices; Microsensors and nanosensors; Micromechanical and nanomechanical devices and systems; Mass and density measurement; Mass and density measurement; Chemical variables measurement; Chemical sensors; MEMS and NEMS device technology

References

    1. 1)
      • 45. Ji, H.-F., Thundat, T.: ‘In situ detection of calcium ions with chemically modified microcantilevers’, Biosens. Bioelectron., 2002, 17, (4), pp. 337343, available at: https://doi.org/10.1016/S0956-5663(01)00270-6.
    2. 2)
      • 15. Li, D., Zhou, K., Chen, Z., et al: ‘Aggregation of silver nanoplates in the presence of l-cysteine and the application for separation’, IET Nanobiotechnol., 2018, 12, (5), pp. 609612.
    3. 3)
      • 58. Chen, Q., Wu, X., Wang, D., et al: ‘Oligonucleotide-functionalized gold nanoparticles-enhanced QCM-d sensor for mercury(ii) ions with high sensitivity and tunable dynamic range’, Analyst, 2011, 136, (12), pp. 25722577.
    4. 4)
    5. 5)
    6. 6)
      • 10. Trivedi, S., Kumar, S., Sharma, S.C., et al: ‘Biosensing application of multiwall boron nitride nanotube-based nanoresonator for detecting various viruses’, IET Nanobiotechnol., 2015, 9, (5), pp. 259263.
    7. 7)
      • 63. Eren, T., Atar, N., Yola, M.L., et al: ‘A sensitive molecularly imprinted polymer based quartz crystal microbalance nanosensor for selective determination of lovastatin in red yeast rice’, Food Chem., 2015, 185, pp. 430436.
    8. 8)
      • 53. Thaysen, J.: ‘HYPERLINK’, available at: http://orbit.dtu.dk/files/4681389/Jacob.
    9. 9)
      • 18. Esmaeili-bandboni, A., Amini, S.M., Faridi-majidi, R., et al: ‘Cross-linking gold nanoparticles aggregation method based on localised surface plasmon resonance for quantitative detection of mir-155’, IET Nanobiotechnol., 2017, 12, (4), pp. 453458.
    10. 10)
      • 37. Tekaya, N., Saiapina, O., Ouada, H.B., et al: ‘Ultra-sensitive conductometric detection of heavy metals based on inhibition of alkaline phosphatase activity from Arthrospira platensis’, Bioelectrochemistry, 2013, 90, pp. 2429, available at: http://dx.doi.org/10.1016/j.bioelechem.2012.10.001.
    11. 11)
      • 109. Guo, X., Huang, J., Wei, Y., et al: ‘Fast and selective detection of mercury ions in environmental water by paper-based fluorescent sensor using boronic acid functionalized MoS2 quantum dots’, J. Hazardous Mater., 2020, 381, p. 120969.
    12. 12)
      • 21. Sharma, P., Mourya, M., Choudhary, D., et al: ‘Thiol terminated chitosan capped silver nanoparticles for sensitive and selective detection of mercury(ii) ions in water’, Sens. Actuators, B, 2018, 268, pp. 310318, available at: https://doi.org/10.1016/j.snb.2018.04.121.
    13. 13)
      • 1. Vardhan, K.H., Kumar, P.S., Panda, R.C.: ‘A review on heavy metal pollution, toxicity and remedial measures: current trends and future perspectives’, J. Mol. Liq., 2019, 111197, pp. 122.
    14. 14)
      • 55. Rotake, D., Darji, A., Kale, N.: ‘Fabrication, calibration and preliminary testing of microcantilever-based piezoresistive sensor for biomems applications’, IET Nanobiotechnol., 2020, 14, pp. 357368.
    15. 15)
      • 65. Yang, Z.-P., Zhang, C.-J.: ‘Mechanism and kinetics of Pb(ii) adsorption on ultrathin nanocrystalline titania coatings’, J. Hazardous Mater., 2009, 172, (2–3), pp. 10821086.
    16. 16)
      • 105. Guo, H., Li, J., Li, Y., et al: ‘Exciton energy transfer-based fluorescent sensor for the detection of Hg2 + through aptamer-programmed self-assembly of QDs’, Anal. Chim. Acta, 2019, 1048, pp. 161167.
    17. 17)
      • 6. Jeromiyas, N., Elaiyappillai, E., Kumar, A. S., et al: ‘Bismuth nanoparticles decorated graphenated carbon nanotubes modified screen-printed electrode for mercury detection’, J. Taiwan Inst. Chem. Eng., 2019, 95, pp. 466474, available at: https://doi.org/10.1016/j.jtice.2018.08.030.
    18. 18)
      • 54. Rotake, D. R., Darji, A. D., Kale, N. S.: ‘Design of microfluidic experimental setup for the detection of heavy metal ions using piezoresistive biomems sensor’, Microelectron. Int., 2019, 37, (1), pp. 1028, available at: https://doi.org/10.1108/MI-05-2019-0025.
    19. 19)
      • 96. Marinho, O. R., Lima, M. J., Reis, B. F.: ‘Automatic multicommuted flow-batch setup for photometric determination of mercury in drinking water at ppb level’, Talanta, 2020, 206, p. 120207.
    20. 20)
      • 19. Laffont, L., Hezard, T., Gros, P., et al: ‘Mercury(ii) trace detection by a gold nanoparticle-modified glassy carbon electrode using square-wave anodic stripping voltammetry including a chloride desorption step’, Talanta, 2015, 141, pp. 2632, available at: https://doi.org/10.1016/j.talanta.2015.03.036.
    21. 21)
      • 94. Xue, T., Qi, K., Hu, C.: ‘Novel SPR sensing platform based on superstructure MoS2 nanosheets for ultrasensitive detection of mercury ion’, Sens. Actuators B: Chem., 2019, 284, pp. 589594, available at: https://doi.org/10.1016/j.snb.2019.01.004.
    22. 22)
      • 60. Lou, H., Zhang, Y., Xiang, Q., et al: ‘The real-time detection of trace-level Hg2 + in water by QCM loaded with thiol-functionalized SBA-15’, Sens. Actuators B: Chem., 2012, 166, pp. 246252.
    23. 23)
      • 35. Li, J., Ge, J., Zhang, Z., et al: ‘A cyanine dye-based fluorescent probe as indicator of copper clock reaction for tracing Cu2 + -catalyzed oxidation of cysteine’, Sens. Actuators B: Chem., 2019, 296, p. 126578, available at: https://doi.org/10.1016/j.snb.2019.05.055.
    24. 24)
      • 91. Niu, X., He, Y., Li, X., et al: ‘A peroxidase-mimicking nanosensor with Hg2 + -triggered enzymatic activity of cysteine-decorated ferromagnetic particles for ultrasensitive Hg2 + detection in environmental and biological fluids’, Sens. Actuators B: Chem., 2019, 281, pp. 445452, available at: https://doi.org/10.1016/j.snb.2018.10.140.
    25. 25)
      • 101. Eddaif, L., Shaban, A., Telegdi, J., et al: ‘A piezogravimetric sensor platform for sensitive detection of lead(ii) ions in water based on calix [4] resorcinarene macrocycles: synthesis, characterization and detection’, Arabian J. Chem., 2020, 13, pp. 44484461.
    26. 26)
      • 29. Biswas, J.K., Banerjee, A., Sarkar, B., et al: ‘Exploration of an extracellular polymeric substance from earthworm gut bacterium (Bacillus licheniformis) for bioflocculation and heavy metal removal potential’, Appl. Sci., 2020, 10, (1), p. 349.
    27. 27)
      • 30. Harsha, K., Appalanaidu, E., Chereddy, N.R., et al: ‘Pyrene tethered imidazole derivative for the qualitative and quantitative detection of mercury present in various matrices’, Sens. Actuators B: Chem., 2018, 256, pp. 528534, available at: https://doi.org/10.1016/j.snb.2017.10.120.
    28. 28)
      • 40. Joon, N.K., He, N., Wagner, M., et al: ‘Influence of phosphate buffer and proteins on the potentiometric response of a polymeric membrane-based solid-contact Pb(ii) ion-selective electrode’, Electrochim. Acta, 2017, 252, pp. 490497, available at: http://dx.doi.org/10.1016/j.electacta.2017.08.126.
    29. 29)
      • 52. Hwang, D.G., Chae, Y.M., Choi, N., et al: ‘Label-free detection of prostate specific antigen (PSA) using a bridge-shaped PZT resonator’, Microsyst. Technol., 2017, 23, (5), pp. 12071214, available at: https://doi.org/10.1007/s00542-015-2804-0.
    30. 30)
      • 2. Minai, M.: ‘Methylmercury and human embryonic development’, Embryo Project Encyclopedia, available at: http://embryo.asu.edu/handle/10776/11335.
    31. 31)
      • 69. Asharani, P., Lianwu, Y., Gong, Z., et al: ‘Comparison of the toxicity of silver, gold and platinum nanoparticles in developing zebrafish embryos’, Nanotoxicology, 2011, 5, (1), pp. 4354, available at: https://doi.org/10.3109/17435390.2010.489207.
    32. 32)
      • 74. Huang, C.-C., Chang, H.-T.: ‘Selective gold-nanoparticle-based ‘turn-on’ fluorescent sensors for detection of mercury(ii) in aqueous solution’, Anal. Chem., 2006, 78, (24), pp. 83328338, available at: https://doi.org/10.1021/ac061487i.
    33. 33)
      • 42. Ding, J., He, N., Lisak, G., et al: ‘Based microfluidic sampling and separation of analytes for potentiometric ion sensing’, Sens. Actuators, B, 2017, 243, pp. 346352, available at: http://dx.doi.org/10.1016/j.snb.2016.11.128.
    34. 34)
      • 90. Amanulla, B., Perumal, K. N., Ramaraj, S. K.: ‘Chitosan functionalized gold nanoparticles assembled on sulphur doped graphitic carbon nitride as a new platform for colorimetric detection of trace Hg2 + ’, Sens. Actuators B: Chem., 2019, 281, pp. 281287, available at: https://doi.org/10.1016/j.snb.2018.10.039.
    35. 35)
      • 77. Du, J., Jiang, L., Shao, Q., et al: ‘Colorimetric detection of mercury ions based on plasmonic nanoparticles’, Small, 2013, 9, (9–10), pp. 14671481, available at: https://doi.org/10.1002/smll.201200811.
    36. 36)
      • 7. Gutierrez, F.A., Gonzalez-Dominguez, J.M., Ansón-Casaos, A., et al: ‘Single-walled carbon nanotubes covalently functionalized with cysteine: a new alternative for the highly sensitive and selective Cd(ii) quantification’, Sens. Actuators B: Chem., 2017, 249, pp. 506514, available at: http://dx.doi.org/10.1016/j.snb.2017.04.026.
    37. 37)
      • 100. Yan, S., Chu, F., Zhang, H., et al: ‘Rapid, one-step preparation of SERs substrate in microfluidic channel for detection of molecules and heavy metal ions’, Spectrochimica Acta A: Mol. Biomolecular Spectroscopy, 2019, 220, p. 117113.
    38. 38)
      • 25. Lan, M., Zhang, J., Chui, Y.-S., et al: ‘Carbon nanoparticle-based ratiometric fluorescent sensor for detecting mercury ions in aqueous media and living cells’, ACS Appl. Mater. Interfaces, 2014, 6, (23), pp. 2127021278.
    39. 39)
      • 14. Lu, Y., Zhong, J., Yao, G., et al: ‘A label-free sers approach to quantitative and selective detection of mercury(ii) based on DNA aptamer-modified SiO2@ Au core/shell nanoparticles’, Sens. Actuators B, 2018, 258, pp. 365372, available at: https://doi.org/10.1016/j.snb.2017.11.110.
    40. 40)
      • 93. Daniel, S.K., Kumar, A., Sivasakthi, K., et al: ‘Handheld, low-cost electronic device for rapid, real-time fluorescence-based detection of Hg2 + , using aptamer-templated ZnO quantum dots’, Sens. Actuators B: Chem., 2019, 290, pp. 7378, available at: https://doi.org/10.1016/j.snb.2019.03.113.
    41. 41)
      • 46. Venstra, W., Wien, W., Sarro, P., et al: ‘Microcantilevers encapsulated in fluid wells for sensing in liquids’, Microelectron. Eng., 2012, 97, pp. 247250, available at: https://doi.org/10.1016/j.mee.2012.03.030.
    42. 42)
      • 79. Liang, X.-C., Chen, S., Gao, J., et al: ‘A versatile fluorimetric chemosensor for mercury (ii) assay based on carbon nanodots’, Sens. Actuators B: Chem., 2018, 265, pp. 293301, available at: https://doi.org/10.1016/j.snb.2018.01.182.
    43. 43)
      • 5. Bajwa, S.Z., Dumler, R., Lieberzeit, P.A.: ‘Molecularly imprinted polymers for conductance sensing of Cu2 + in aqueous solutions’, Sens. Actuators B: Chem., 2014, 192, pp. 522528, available at: http://dx.doi.org/10.1016/j.snb.2013.11.013.
    44. 44)
    45. 45)
      • 66. Sauerbrey, G.: ‘Use of quartz vibrator for weighting thin films on a microbalance’, Z. Angew. Phys., 1959, 155, pp. 206212.
    46. 46)
      • 8. Ramírez, M.L., Tettamanti, C.S., Gutierrez, F.A., et al: ‘Cysteine functionalized bio-nanomaterial for the affinity sensing of Pb(ii) as an indicator of environmental damage’, Microchemical. J., 2018, 141, pp. 271278, available at: https://doi.org/10.1016/j.microc.2018.05.007.
    47. 47)
      • 59. Eddaif, L., Shaban, A., Szendro, I.: ‘Calix [4] resorcinarene macrocycles interactions with Cd2 + , Hg2 + , Pb2 + , and Cu2 + cations: a qcm-i and Langmuir ultra-thin monolayers study’, Electroanalysis, 2020, 32, (4), pp. 755766.
    48. 48)
      • 110. Charbgoo, F., Ramezani, M., Darroudi, M.: ‘Bio-sensing applications of cerium oxide nanoparticles: advantages and disadvantages’, Biosens. Bioelectron., 2017, 96, pp. 3343.
    49. 49)
      • 22. Rafipour, R., Kashanian, S., Tarighat, F.A.: ‘Sensitive electrochemical biosensing of H2O2 based on cobalt nanoparticles synthesised in iron storage protein molecules, ferritin’, IET Nanobiotechnol., 2014, 8, (4), pp. 196200.
    50. 50)
      • 11. Wu, Y., Jiang, T., Wu, Z., et al: ‘Novel ratiometric surface-enhanced Raman spectroscopy apt sensor for sensitive and reproducible sensing of Hg2 + ’, Biosens. Bioelectron., 2018, 99, pp. 646652, available at: https://doi.org/10.1016/j.bios.2017.08.041.
    51. 51)
    52. 52)
      • 9. Panchal, M.B., Upadhyay, S.H.: ‘Single walled boron nitride nanotube-based biosensor: an atomistic finite element modelling approach’, IET Nanobiotechnol., 2013, 8, (3), pp. 149156.
    53. 53)
      • 106. Vijayan, A. N., Liu, Z., Zhao, H., et al: ‘Nicking enzyme-assisted signal-amplifiable Hg2 + detection using up conversion nanoparticles’, Anal. Chim. Acta, 2019, 1072, pp. 7580.
    54. 54)
      • 67. Marx, K.A.: ‘Quartz crystal microbalance: a useful tool for studying thin polymer films and complex biomolecular systems at the solution-surface interface’, Biomacromolecules, 2003, 4, (5), pp. 10991120.
    55. 55)
    56. 56)
      • 70. Asharani, P., Wu, Y.L., Gong, Z., et al: ‘Toxicity of silver nanoparticles in zebrafish models’, Nanotechnology, 2008, 19, (25), p. 255102, available at: https://doi.org/10.1088/0957-4484/19/25/255102.
    57. 57)
      • 41. Ocaña, C., Abramova, N., Bratov, A., et al: ‘Calcium-selective electrodes based on photo-cured polyurethane-acrylate membranes covalently attached to methacrylate functionalized poly (3, 4-ethylenedioxythiophene) as solid-contact’, Talanta, 2018, 186, pp. 279285, available at: https://doi.org/10.1016/j.talanta.2018.04.056.
    58. 58)
      • 64. Munawar, A., Schirhagl, R., Rehman, A., et al: ‘Facile in situ generation of bismuth tungstate nanosheet-multiwalled carbon nanotube composite as unconventional affinity material for quartz crystal microbalance detection of antibiotics’, J. Hazardous Mater., 2019, 373, pp. 5059.
    59. 59)
      • 27. Nithya, K., Sathish, A., Kumar, P.S., et al: ‘Functional group-assisted green synthesised superparamagnetic nanoparticles for the rapid removal of hexavalent chromium from aqueous solution’, IET Nanobiotechnol., 2017, 11, (7), pp. 852860.
    60. 60)
      • 4. Bajwa, S.Z., Lieberzeit, P.A.: ‘Recognition principle of Cu2 + -imprinted polymers-assessing interactions by combined spectroscopic and mass-sensitive measurements’, Sens. Actuators B: Chem., 2015, 207, pp. 976980, available at: http://dx.doi.org/10.1016/j.snb.2014.07.066.
    61. 61)
      • 99. Tian, L.-J., Min, Y., Wang, X.-M., et al: ‘Biogenic quantum dots for sensitive, label-free detection of mercury ions’, ACS Appl. Bio Mater., 2019, 2, pp. 26612667.
    62. 62)
      • 104. Liao, S., Li, X., Yang, H., et al: ‘Nitrogen-doped carbon dots rapid and selective detection of mercury ion and biothiol and construction of an implication logic gate’, Talanta, 2019, 194, pp. 554562.
    63. 63)
      • 82. Yasseri, A.A., Sharma, S., Kamins, T.I., et al: ‘Alkylsiloxane self-assembled monolayer formation guided by nanoimprinted Si and SiO2 templates’, Appl. Phys. Lett., 2006, 89, (15), p. 153121.
    64. 64)
      • 97. Huang, Y., Li, F., Ma, G., et al: ‘Aggregation induced photoacoustic detection of mercury(II) ions using quaternary ammonium group-capped gold nanorods’, Talanta, 2018, 187, pp. 6572.
    65. 65)
      • 12. Seifati, S.M., Nasirizadeh, N., Azimzadeh, M.: ‘Nano-biosensor based on reduced graphene oxide and gold nanoparticles, for detection of phenylketonuria-associated DNA mutation’, IET Nanobiotechnol., 2017, 12, (4), pp. 417422.
    66. 66)
      • 20. Zhang, P., Lyu, Z., Viktorova, J., et al: ‘Nanoparticle stripe based sensor for highly sensitive and selective detection of mercury ions’, Biosens. Bioelectron., 2018, 117, pp. 450456, available at: https://doi.org/10.1016/j.bios.2018.06.029.
    67. 67)
      • 3. Armas, M., María-Hormigos, R., Cantalapiedra, A., et al: ‘Multiparametric optimization of a new high-sensitive and disposable mercury(ii) electrochemical sensor’, Anal. Chim. Acta, 2016, 904, pp. 7682, available at: https://doi.org/10.1016/j.aca.2015.11.016.
    68. 68)
      • 81. Aldrich, S.: ‘Preparing self-assembled monolayers (SAMs) a step-by-step guide for solution-based self-assembly’.
    69. 69)
      • 62. Gupta, V.K., Yola, M.L., Eren, T., et al: ‘Selective QCM sensor based on atrazine imprinted polymer: its application to wastewater sample’, Sens. Actuators B: Chem., 2015, 218, pp. 215221.
    70. 70)
      • 23. Azimpanah, R., Solati, Z., Hashemi, M.: ‘Green synthesis of silver nanoparticles and their applications as colorimetric probe for determination of Fe3 + and Hg2 + ions’, IET Nanobiotechnol., 2018, 12, (5), pp. 673677.
    71. 71)
      • 39. Yu, K., He, N., Kumar, N., et al: ‘Electrosynthesized polypyrrole/zeolite composites as solid contact in potassium ion-selective electrode’, Electrochim. Acta, 2017, 228, pp. 6675, available at: http://dx.doi.org/10.1016/j.electacta.2017.01.009.
    72. 72)
      • 72. Kovochich, M., Xia, T., Xu, J., et al: ‘Principles and procedures to assess nanomaterial toxicity, environmental nanotechnology: applications and impacts of nanomaterials’ (McGraw-Hill, New York, 2007), pp. 205229.
    73. 73)
      • 86. Etchenique, R., Calvo, E.: ‘Gravimetric measurement in redox polymer electrodes with the EQCM beyond the Sauerbrey limit’, Electrochem. Commun., 1999, 1, (5), pp. 167170.
    74. 74)
      • 103. Li, W., Li, Y., Qian, H.-L., et al: ‘Fabrication of a covalent organic framework and its gold nanoparticle hybrids as stable mimetic peroxidase for sensitive and selective colorimetric detection of mercury in water samples’, Talanta, 2019, 204, pp. 224228.
    75. 75)
      • 33. Song, Z., Wang, F., Qiang, J., et al: ‘Fluorescent probe encapsulated hydrogel microsphere for selective and reversible detection of Hg2 + ’, J. Lumin., 2017, 183, pp. 212216, available at: http://dx.doi.org/10.1016/j.jlumin.2016.11.052.
    76. 76)
      • 87. Lucklum, R., Hauptmann, P.: ‘The quartz crystal microbalance: mass sensitivity, viscoelasticity and acoustic amplification’, Sens. Actuators B: Chem., 2000, 70, (1–3), pp. 3036.
    77. 77)
      • 61. Yola, M. L., Uzun, L., Özaltın, N., et al: ‘Development of molecular imprinted nanosensor for determination of tobramycin in pharmaceuticals and foods’, Talanta, 2014, 120, pp. 318324.
    78. 78)
      • 44. Cherian, S., Gupta, R.K., Mullin, B.C., et al: ‘Detection of heavy metal ions using protein-functionalized microcantilever sensors’, Biosens. Bioelectron., 2003, 19, (5), pp. 411416, available at: https://doi.org/10.1016/S0956-5663(03)00226-4.
    79. 79)
      • 73. Royce, S.G., Mukherjee, D., Cai, T., et al: ‘Modeling population exposures to silver nanoparticles present in consumer products’, J. Nanoparticle Res., 2014, 16, (11), p. 2724, available at: https://doi.org/10.1007/s11051-014-2724-4.
    80. 80)
      • 38. Tekaya, N., Gammoudi, I., Braiek, M., et al: ‘Acoustic, electrochemical and microscopic characterization of interaction of Arthrospira platensis biofilm and heavy metal ions’, J. Environ. Chem. Eng., 2013, 1, (3), pp. 609619, available at: http://dx.doi.org/10.1016/j.jece.2013.07.006.
    81. 81)
    82. 82)
    83. 83)
      • 31. Borthakur, P., Darabdhara, G., Das, M.R., et al: ‘Solvothermal synthesis of cos/reduced porous graphene oxide nanocomposite for selective colorimetric detection of Hg(ii) ion in aqueous medium’, Sens. Actuators B: Chem., 2017, 244, pp. 684692, available at: https://doi.org/10.1016/j.snb.2016.12.148.
    84. 84)
      • 24. Christopher, F.C., Anbalagan, S., Kumar, P.S., et al: ‘Surface adsorption of poisonous Pb(ii) ions from water using chitosan functionalised magnetic nanoparticles’, IET Nanobiotechnol., 2016, 11, (4), pp. 433442.
    85. 85)
      • 102. Amirjani, A., Haghshenas, D. F.: ‘Facile and on- line colorimetric detection of hg2 + based on localized surface plasmon resonance (LSPR) of Ag nanotriangles’, Talanta, 2019, 192, pp. 418423.
    86. 86)
      • 107. Ru, F., Du, P., Lu, X.: ‘Efficient ratiometric fluorescence probe utilizing silicon particles/gold nanoclusters nanohybrid for ‘on-off-on’ bifunctional detection and cellular imaging of mercury(ii) ions and cysteine’, Anal. Chim. Acta, 2020, 1105, pp. 139146.
    87. 87)
      • 68. Rai, M., Biswas, J. K.: ‘Nanomaterials: ecotoxicity, safety, and public perception’ (Springer, Switzerland, 2018).
    88. 88)
    89. 89)
      • 84. Salomäki, M., Kankare, J.: ‘Large apparent interfacial slippage at polyelectrolyte- perfluorocarbon interfaces on a quartz crystal resonator’, Langmuir, 2004, 20, (18), pp. 77947801.
    90. 90)
      • 71. Asharani, P., Low Kah Mun, G., Hande, M.P., et al: ‘Cytotoxicity and genotoxicity of silver nanoparticles in human cells’, ACS Nano, 2008, 3, (2), pp. 279290, available at: https://doi.org/10.1021/nn800596w.
    91. 91)
      • 13. Song, S., Choi, S., Ryu, S., et al: ‘Highly sensitive paper-based immunoassay using photothermal laser speckle imaging’, Biosens. Bioelectron., 2018, 117, pp. 385391, available at: https://doi.org/10.1016/j.bios.2018.06.024.
    92. 92)
      • 32. Zhang, Y., Chen, H., Chen, D., et al: ‘A colorimetric and ratiometric fluorescent probe for mercury(ii) in lysosome’, Sens. Actuators B: Chem., 2016, 224, pp. 907914, http://dx.doi.org/10.1016/j.snb.2015.11.018.
    93. 93)
      • 98. Cheng, Y., Li, J., Deng, S., et al: ‘AgNPs@ ag(i)-AMTD metal-organic gel-nanocomposites act as a SERs probe for the detection of Hg2 + ’, Compos. Commun., 2019, 13, pp. 7579.
    94. 94)
      • 88. Hillier, A.C., Ward, M.: ‘Scanning electrochemical mass sensitivity mapping of the quartz crystal microbalance in liquid media’, Anal. Chem., 1992, 64, (21), pp. 25392554.
    95. 95)
      • 56. Rotake, D., Darji, A., Singh, J.: ‘Thin-film based sensor for the selective detection of mercury (Hg2+ at) ions at the picomolar range’, Sens. Rev., 2020, 40, (4), pp. 485495.
    96. 96)
      • 92. Du, F., Sun, L., Zen, Q., et al: ‘A highly sensitive and selective ‘on-off-on’ fluorescent sensor based on nitrogen doped graphene quantum dots for the detection of Hg2 + and paraquat’, Sens. Actuators B: Chem., 2019, 288, pp. 96103, available at: https://doi.org/10.1016/j.snb.2019.02.109.
    97. 97)
      • 95. Yang, Y., Lu, L., Tian, X., et al: ‘Ratiometric fluorescence detection of mercuric ions by sole intrinsic dual-emitting gold nanoclusters’, Sens. Actuators B: Chem., 2019, 278, pp. 8287, available at: https://doi.org/10.1016/j.snb.2018.09.072.
    98. 98)
      • 34. Liu, C., Xiao, T., Wang, Y., et al: ‘Rhodamine based turn-on fluorescent sensor for Hg2 + and its application of microfluidic system and bioimaging’, Tetrahedron, 2017, 73, (34), pp. 51895193, available at: http://dx.doi.org/10.1016/j.tet.2017.07.012.
    99. 99)
      • 78. Darbha, G.K., Singh, A.K., Rai, U.S., et al: ‘Selective detection of mercury (ii) ion using nonlinear optical properties of gold nanoparticles’, J. Am. Chem. Soc., 2008, 130, (25), pp. 80388043, available at: https://doi.org/10.1021/ja801412b.
    100. 100)
      • 16. Giacomino, A., Redda, A.R., Squadrone, S., et al: ‘Anodic stripping voltammetry with gold electrodes as an alternative method for the routine determination of mercury in fish. Comparison with spectroscopic approaches’, Food Chem., 2017, 221, pp. 737745, https://doi.org/10.1016/j.foodchem.2016.11.111.
    101. 101)
      • 80. Love, J.C., Estroff, L.A., Kriebel, J.K., et al: ‘Self-assembled monolayers of thiolates on metals as a form of nanotechnology’, Chem. Rev., 2005, 105, (4), pp. 11031170, available at: https://doi.org/10.1021/cr0300789.
    102. 102)
      • 57. Sheng, Z., Han, J., Zhang, J., et al: ‘Method for detection of Hg2 + based on the specific thymine–Hg2 + –thymine interaction in the DNA hybridization on the surface of quartz crystal microbalance’, Colloids Surf. B, Biointerfaces., 2011, 87, (2), pp. 289292.
    103. 103)
    104. 104)
    105. 105)
      • 28. Shahat, A., Hassan, H.M., Azzazy, H.M., et al: ‘Novel hierarchical composite adsorbent for selective lead(ii) ions capturing from wastewater samples’, Chem. Eng. J., 2018, 332, pp. 377386, https://doi.org/10.1016/j.cej.2017.09.040.
    106. 106)
      • 108. Li, H., Chen, Q., Hassan, M. M., et al: ‘Auns@ ag core-shell nanocubes grafted with rhodamine for concurrent metal-enhanced fluorescence and surfaced enhanced Raman determination of mercury ions’, Anal. Chim. Acta, 2018, 1018, pp. 94103.
    107. 107)
      • 83. Latif, U., Can, S., Hayden, O., et al: ‘Sauerbrey and anti-Sauerbrey behavioral studies in QCM sensors-detection of bioanalytes’, Sens. Actuators B: Chem., 2013, 176, pp. 825830.
    108. 108)
      • 26. Joshiba, G.J., Kumar, P.S., Christopher, F.C., et al: ‘Insights of CMNPs in water pollution control’, IET Nanobiotechnol., 2019, 13, (6), pp. 553559.
    109. 109)
      • 85. Salomäki, M., Kankare, J.: ‘Modeling the growth processes of polyelectrolyte multilayers using a quartz crystal resonator’, J. Phys. Chem. B, 2007, 111, (29), pp. 85098519.
    110. 110)
      • 89. Wu, Z., Jing, G., Cui, T.: ‘Shrink-induced ultrasensitive mercury sensor with graphene and gold nanoparticles self-assembly’, Microsyst. Technol., 2019, 25, (1), pp. 1117, available at: https://doi.org/10.1007/s00542-018-3925-z.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-nbt.2020.0109
Loading

Related content

content/journals/10.1049/iet-nbt.2020.0109
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading