Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Iron oxide/gold nanoparticles-decorated reduced graphene oxide nanohybrid as the thermo-radiotherapy agent

The main focus of the current study is the fabrication of a multifunctional nanohybrid based on graphene oxide (GO)/iron oxide/gold nanoparticles (NPs) as the combinatorial cancer treatment agent. Gold and iron oxide NPs formed on the GONPs via the in situ synthesis approach. The characterisations showed that gold and iron oxide NPs formed onto the GO. Cell toxicity assessment revealed that the fabricated nanohybrid exhibited negligible toxicity against MCF-7 cells in low doses (<50 ppm). Temperature measurement showed a time and dose-dependent heat elevation under the interaction of the nanohybrid with the radio frequency (RF) wave. The highest temperature was recorded using 200 ppm concentration nanohybrid during 40 min exposure. The combinatorial treatments demonstrated that the maximum cell death (average of 53%) was induced with the combination of the nanohybrid with RF waves and radiotherapy (RT). The mechanistic study using the flow cytometry technique illustrated that early apoptosis was the main underlying cell death. Moreover, the dose enhancement factor of 1.63 and 2.63 were obtained from RT and RF, respectively. To sum up, the authors’ findings indicated that the prepared nanohybrid could be considered as multifunctional and combinatorial cancer therapy agents.

References

    1. 1)
      • 3. Poorgholy, N., Massoumi, B., Ghorbani, M., et al: ‘Intelligent anticancer drug delivery performances of two poly (N-isopropylacrylamide)-based magnetite nanohydrogels’, Drug Dev. Ind. Pharm., 2018, 44, (8), pp. 12541261.
    2. 2)
      • 29. Khalilzadeh, B., Shadjou, N., Afsharan, H., et al: ‘Reduced graphene oxide decorated with gold nanoparticle as signal amplification element on ultra-sensitive electrochemiluminescence determination of caspase-3 activity and apoptosis using peptide based biosensor’, Bioimpacts, 2016, 6, (3), p. 135.
    3. 3)
      • 16. Abbasian, M., Judi, M., Mahmoodzadeh, F., et al: ‘Synthesis and characterization of a pH- and glucose-responsive triblock copolymer via raft technique and its conjugation with gold nanoparticles for biomedical applications’, Polym. Adv. Technol., 2018, 29, (12), pp. 30973105.
    4. 4)
      • 33. Mortazavi, S., Erfani, N., Mozdarani, H., et al: ‘Induction of apoptosis by 900 MHz radiofrequency radiation emitted from a GSM mobile phone simulator in bystander Jurkat cells’, Int. J. Radiat. Res., 2015, 13, (2), pp. 181186.
    5. 5)
      • 40. Wolfe, T., Chatterjee, D., Lee, J., et al: ‘Targeted gold nanoparticles enhance sensitization of prostate tumors to megavoltage radiation therapy in vivo’, Nanomed. Nanotechnol. Biol. Med., 2015, 11, (5), pp. 12771283.
    6. 6)
      • 20. Pantano, P., Harrison, C.D., Poulose, J., et al: ‘Factors affecting the 13.56-MHz radio-frequency-mediated heating of gold nanoparticles’, Appl. Spectrosc. Rev., 2017, 52, (9), pp. 821836.
    7. 7)
      • 14. Mortezaee, K., Najafi, M., Samadian, H., et al: ‘Redox interactions and genotoxicity of metal-based nanoparticles: a comprehensive review’, Chemico-Biol. Interact., 2019, 312, p. 108814.
    8. 8)
      • 4. Falk, M., Issels, R.: ‘Hyperthermia in oncology’, Int. J. Hyperth., 2001, 17, (1), pp. 118.
    9. 9)
      • 23. Gotman, I., Psakhie, S.G., Lozhkomoev, A.S., et al: ‘Iron oxide and gold nanoparticles in cancer therapy’. AIP Conf. Proc., Tomsk, Russia, 2016.
    10. 10)
      • 6. Issels, R.D.: ‘Hyperthermia adds to chemotherapy’, Eur. J. Cancer, 2008, 44, (17), pp. 25462554.
    11. 11)
      • 38. Collins, C., McCoy, R., Ackerson, B., et al: ‘Radiofrequency heating pathways for gold nanoparticles’, Nanoscale, 2014, 6, (15), pp. 84598472.
    12. 12)
      • 2. Mahmoodzadeh, F., Abbasian, M., Jaymand, M., et al: ‘A novel gold-based stimuli-responsive theranostic nanomedicine for chemo-photothermal therapy of solid tumors’, Mater. Sci. Eng. C, 2018, 93, pp. 880889.
    13. 13)
      • 8. Rodrigues, R.O., Baldi, G., Doumett, S., et al: ‘Multifunctional graphene-based magnetic nanocarriers for combined hyperthermia and dual stimuli-responsive drug delivery’, Mater. Sci. Eng. C, 2018, 93, pp. 206217.
    14. 14)
      • 31. Ge, S., Shi, X., Sun, K., et al: ‘Facile hydrothermal synthesis of iron oxide nanoparticles with tunable magnetic properties’, J. Phys. Chem. C, 2009, 113, (31), pp. 1359313599.
    15. 15)
      • 19. Naik, B., Dubey, S.K.: ‘Gold coated cobalt nanoparticles as SAR controlling agent for hyperthermia applications’. 2017 IEEE MTT-S Int. Microwave and RF Conf. (IMaRC), Ahmedabad, India, 2017.
    16. 16)
      • 18. Corr, S.J., Curley, S.A.: ‘Gold nanoparticles for noninvasive radiofrequency cancer hyperthermia’, in Mathur, A.B. (Ed.): Nanotechnology in Cancer (William Andrew Publishing, USA., 2017), pp. 118.
    17. 17)
      • 1. DeSantis, C.E., Ma, J., Goding Sauer, A., et al: ‘Breast cancer statistics, 2017, racial disparity in mortality by state’, CA Cancer J. Clin., 2017, 67, (6), pp. 439448.
    18. 18)
      • 5. Hahn, G.M.: ‘Hyperthermia and cancer’ (Springer Science & Business Media, USA, 2012).
    19. 19)
      • 9. Fazal, S., Paul-Prasanth, B., Nair, S.V., et al: ‘Theranostic iron oxide/gold ion nanoprobes for MR imaging and noninvasive RF hyperthermia’, ACS Appl. Mater. Interfaces, 2017, 9, (34), pp. 2826028272.
    20. 20)
      • 30. Zaaba, N., Foo, K., Hashim, U., et al: ‘Synthesis of graphene oxide using modified hummers method: solvent influence’, Procedia Eng., 2017, 184, pp. 469477.
    21. 21)
      • 17. Chakaravarthi, G., Narasimhan, A.K., Rao, M.R., et al: ‘Influence of gold nanoparticles (GNPs) on radiofrequency tissue heating’. 2019 URSI Asia-Pacific Radio Science Conf. (AP-RASC), New Delhi, India, 2019.
    22. 22)
      • 37. Kumar, R., Chauhan, A., Jha, S.K., et al: ‘Localized cancer treatment by radio-frequency hyperthermia using magnetic nanoparticles immobilized on graphene oxide: from novel synthesis to in vitro studies’, J. Mater. Chem. B, 2018, 6, (33), pp. 53855399.
    23. 23)
      • 25. Amini, S.M., Akbari, A.: ‘Metal nanoparticles synthesis through natural phenolic acids’, IET Nanobiotechnol., 2019, 13, (8), pp. 771777.
    24. 24)
      • 32. Chen, F., Wang, Y., Chen, Q., et al: ‘Multifunctional nanocomposites of Fe3O4–graphene–Au for repeated use in simultaneous adsorption, in situ SERS detection and catalytic reduction of 4-nitrophenol in water’, Mater. Res. Express, 2014, 1, (4), p. 045049.
    25. 25)
      • 15. Khoshnevisan, K., Daneshpour, M., Barkhi, M., et al: ‘The promising potentials of capped gold nanoparticles for drug delivery systems’, J. Drug Targeting, 2018, 26, (7), pp. 525532.
    26. 26)
      • 28. Rezaei, A., Akhavan, O., Hashemi, E., et al: ‘Toward chemical perfection of graphene-based gene carrier via Ugi multicomponent assembly process’, Biomacromolecules, 2016, 17, (9), pp. 29632971.
    27. 27)
      • 7. Kim, H.-C., Kim, E., Jeong, S.W., et al: ‘Magnetic nanoparticle-conjugated polymeric micelles for combined hyperthermia and chemotherapy’, Nanoscale, 2015, 7, (39), pp. 1647016480.
    28. 28)
      • 41. Neshastehriz, A., Tabei, M., Maleki, S., et al: ‘Photothermal therapy using folate conjugated gold nanoparticles enhances the effects of 6 MV X-ray on mouth epidermal carcinoma cells’, J. Photochem. Photobiol. B, Biol., 2017, 172, pp. 5260.
    29. 29)
      • 24. Abbasian, M., Razavi, L., Jaymand, M., et al: ‘Synthesis and characterization of poly(styrene-block-acrylic acid)/Fe3O4 magnetic nanocomposite using reversible addition-fragmentation chain transfer polymerization’, Sci. Iran., 2019, 26, (3), pp. 14471456.
    30. 30)
      • 27. Adibi-Motlagh, B., Lotfi, A.S., Rezaei, A., et al: ‘Cell attachment evaluation of the immobilized bioactive peptide on a nanographene oxide composite’, Mater. Sci. Eng. C, 2018, 82, pp. 323329.
    31. 31)
      • 35. Goncalves, G., Marques, P.A., Granadeiro, C.M., et al: ‘Surface modification of graphene nanosheets with gold nanoparticles: the role of oxygen moieties at graphene surface on gold nucleation and growth’, Chem. Mater., 2009, 21, (20), pp. 47964802.
    32. 32)
      • 39. Vallejo-Fernandez, G., Whear, O., Roca, A., et al: ‘Mechanisms of hyperthermia in magnetic nanoparticles’, J. Phys. D, Appl. Phys., 2013, 46, (31), p. 312001.
    33. 33)
      • 21. Dou, J.-P., Zhou, Q.-F., Liang, P., et al: ‘Advances in nanostructure-mediated hyperthermia in tumor therapies’, Curr. Drug Metab., 2018, 19, (2), pp. 8593.
    34. 34)
      • 36. Huang, J., Zhang, L., Chen, B., et al: ‘Nanocomposites of size-controlled gold nanoparticles and graphene oxide: formation and applications in SERS and catalysis’, Nanoscale, 2010, 2, (12), pp. 27332738.
    35. 35)
      • 10. Kurgan, E., Gas, P.: ‘Simulation of the electromagnetic field and temperature distribution in human tissue in RF hyperthermia’, Prz. Elektrotech., 2015, 91, (1), pp. 169172.
    36. 36)
      • 26. Mohammadi, M., Rezaei, A., Khazaei, A., et al: ‘Targeted development of sustainable green catalysts for oxidation of alcohols via tungstate-decorated multifunctional amphiphilic carbon quantum dots’, ACS Appl. Mater. Interfaces, 2019, 11, (36), pp. 3319433206.
    37. 37)
      • 12. Esmaeili-Bandboni, A., Amini, S.M., Faridi-Majidi, R., et al: ‘Cross-linking gold nanoparticles aggregation method based on localised surface plasmon resonance for quantitative detection of MIR-155’, IET Nanobiotechnol., 2017, 12, (4), pp. 453458.
    38. 38)
      • 13. Amini, S.M., Kharrazi, S., Hadizadeh, M., et al: ‘Effect of gold nanoparticles on photodynamic efficiency of 5-aminolevolenic acid photosensitiser in epidermal carcinoma cell line: an in vitro study’, IET Nanobiotechnol., 2013, 7, (4), pp. 151156.
    39. 39)
      • 34. Kan, J., Wang, Y.: ‘Large and fast reversible Li-ion storages in Fe2O3-graphene sheet-on-sheet sandwich-like nanocomposites’, Sci. Rep., 2013, 3, p. 3502.
    40. 40)
      • 22. Hemery, G., Garanger, E., Lecommandoux, S., et al: ‘Thermosensitive polymer-grafted iron oxide nanoparticles studied by in situ dynamic light backscattering under magnetic hyperthermia’, J. Phys. D, Appl. Phys., 2015, 48, (49), p. 494001.
    41. 41)
      • 11. Nasseri, B., Kocum, I.C., Seymen, C.M., et al: ‘Penetration depth in nanoparticles incorporated radiofrequency hyperthermia into the tissue: comprehensive study with histology and pathology observations’, IET Nanobiotechnol., 2019, 13, (6), pp. 634639.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-nbt.2020.0106
Loading

Related content

content/journals/10.1049/iet-nbt.2020.0106
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address