access icon free Synthesis of manganese doped β-FeOOH and MnFe2O4 nanorods for enhanced drug delivery and hyperthermia application

Preparation of manganese ferrite (MnFe2O4) nanorods by the reduction of akaganeite seeds in the presence of oleylamine is reported. The Mn-doped β-FeOOH akaganeite seeds have been processed by the hydrolysis of metal-chloride salts in the presence of polyethylenimine (PEI) surfactant. The hydrophobic oleylamine capped nanorods are made hydrophilic using trisodium citrate as a phase transferring agent. The nanorods form with an aspect ratio of 5.47 and possess a high magnetisation value of 69 emu/g at an applied magnetic field of 1.5 T. The colloidal water dispersion of nanorods exhibits superior heating efficiency by the application of alternating magnetic field (AMF). A specific absorption rate value of 798 W/g is achieved at an applied AMF of field strength 500 Oe and frequency 316 kHz. Further, the citrate functionalised nanorods are capable of attaching with doxorubicin (DOX) electrostatically with a loading efficiency of 97% and the drug release is pH responsive. The DOX loaded nanorods show a promising effect on the apoptosis of MCF-7 as experimented in vitro.

Inspec keywords: manganese; cancer; nanofabrication; ferrites; pH; cellular biophysics; manganese compounds; colloids; hyperthermia; magnetisation; drug delivery systems; magnetic particles; biomedical materials; nanorods; hydrophobicity; nanoparticles; nanomagnetics; hydrophilicity; nanomedicine; iron compounds

Other keywords: hydrophilicity; hydrophobic oleylamine capped nanorods; trisodium citrate; hyperthermia application; hydrolysis; high magnetisation; MnFe2O4; FeOOH:Mg; polyethylenimine surfactant; enhanced drug delivery; akaganeite seeds; manganese ferrite nanorods; colloidal water dispersion; frequency 316.0 kHz; phase transferring agent; alternating magnetic field; applied magnetic field; reduction; heating efficiency; absorption rate; hydrophilic using trisodium citrate

Subjects: Magnetic properties of nanostructures; Patient care and treatment; Amorphous and nanostructured magnetic materials; Biomedical materials; Other methods of preparation of materials; Colloids; Cellular biophysics; Biothermics; Magnetization curves, hysteresis, Barkhausen and related effects; Other methods of nanofabrication; Fine-particle magnetic systems; Structure of solid clusters, nanoparticles, nanotubes and nanostructured materials; Ferrimagnetics; Nanotechnology applications in biomedicine

References

    1. 1)
      • 48. Reyes-Ortega, F., Checa Fernandez, B.L., Delgado, A.V., et al: ‘Hyperthermia-triggered doxorubicin release from polymer-coated magnetic nanorods’, Pharmaceutics., 2019, 11, (10), pp. 517520.
    2. 2)
      • 38. He, X., Zhong, W., Au, C.T., et al: ‘Size dependence of the magnetic properties of Ni nanoparticles prepared by thermal decomposition method’, Nanoscale Res. Lett., 2013, 8, (1), p. 446.
    3. 3)
      • 39. Mi, Y., Liu, X., Zhao, J., et al: ‘Multimodality treatment of cancer with herceptin conjugated, thermomagnetic iron oxides and docetaxel loaded nanoparticles of biodegradable polymers’, Biomaterials, 2012, 33, (30), pp. 75197529.
    4. 4)
      • 16. Min, C., Bo, T., Nikles, D.E.: ‘Preparation of iron nanoparticles by reduction of acicular/spl beta/-FeOOH particles’, IEEE Trans. Magn., 1998, 34, (4), pp. 11411143.
    5. 5)
      • 29. Fan, J., Zhao, Z., Ding, Z., et al: ‘Synthesis of different crystallographic FeOOH catalysts for peroxymonosulfate activation towards organic matter degradation’, RSC Adv., 2018, 8, (13), pp. 72697279.
    6. 6)
      • 34. Salehnia, Z., Shahbazi-Gahrouei, D., Akbarzadeh, A., et al: ‘Synthesis and characterisation of iron oxide nanoparticles conjugated with epidermal growth factor receptor (egfr) monoclonal antibody as mri contrast agent for cancer detection’, IET Nanobiotechnol., 2019, 13, (4), pp. 400406.
    7. 7)
      • 30. Wang, J., Chen, Q., Hou, B., et al: ‘Synthesis and magnetic properties of single-crystals of MnFe2O4 nanorods’, Eur. J. Inorg. Chem., 2004, 2004, (6), pp. 11651168.
    8. 8)
      • 49. Rangam, N., Jaiswal, A., Bellare, J., et al: ‘Synthesis of surface grafted mesoporous magnetic nanoparticles for cancer therapy’, J. Nanosci. Nanotechnol., 2017, 17, (8), pp. 51815188.
    9. 9)
      • 43. Zhang, F., Braun, G.B., Pallaoro, A., et al: ‘Mesoporous multifunctional upconversion luminescent and magnetic ‘nanorattle’ materials for targeted chemotherapy’, Nano Lett., 2012, 12, (1), pp. 6167.
    10. 10)
      • 33. Sawatzky, G.A., Van Der Woude, F., Morrish, A.H.: ‘Ossbauer study of several ferrimagnetic spinels’, Phys. Rev., 1969, 187, (2), pp. 747757.
    11. 11)
      • 28. Thottoli, A.K., Unni, A.K.A.: ‘Effect of trisodium citrate concentration on the particle growth of ZnS nanoparticles’, J. Nanostruct. Chem., 2013, 3, (1), p. 56.
    12. 12)
      • 27. Chen, M., Feng, Y.-G., Wang, X., et al: ‘Silver nanoparticles capped by oleylamine: formation, growth, and self-organization’, Langmuir, 2007, 23, (10), pp. 52965304.
    13. 13)
      • 17. Mohapatra, J., Mitra, A., Tyagi, H., et al: ‘Iron oxide nanorods as high-performance magnetic resonance imaging contrast agents’, Nanoscale, 2015, 7, (20), pp. 91749184.
    14. 14)
      • 40. Barick, K.C., Singh, S., Jadhav, N.V., et al: ‘pH-responsive peptide mimic shell cross-linked magnetic nanocarriers for combination therapy’, Adv. Funct. Mater., 2012, 22, (23), pp. 49754984.
    15. 15)
      • 19. Li, F., Xu, H., Sun, P., et al: ‘Size effects of magnetic beads in circulating tumour cells magnetic capture based on streptavidin–biotin complexation’, IET Nanobiotechnol., 2019, 13, (1), pp. 611.
    16. 16)
      • 12. Ramachandra Kurup Sasikala, A., Thomas, R.G., Unnithan, A.R., et al: ‘Multifunctional nanocarpets for cancer theranostics: remotely controlled graphene nanoheaters for thermo-chemosensitisation and magnetic resonance imaging’, Sci. Rep., 2016, 6, (1), p. 20543.
    17. 17)
      • 47. Geng, S., Yang, H., Ren, X., et al: ‘Anisotropic magnetite nanorods for enhanced magnetic hyperthermia’, Chem. Asian J., 2016, 11, (21), pp. 29963000.
    18. 18)
      • 26. Murad, E., Bishop, J.L.: ‘The infrared Spectrum of synthetic akaganéite, Β-FeOOH’, Am. Mineral., 2000, 85, (5), pp. 716721.
    19. 19)
      • 18. Nikitin, A., Khramtsov, M., Garanina, A., et al: ‘Synthesis of iron oxide nanorods for enhanced magnetic hyperthermia’, J. Magn. Magn. Mater., 2019, 469, pp. 443449.
    20. 20)
      • 8. Maier-Hauff, K., Ulrich, F., Nestler, D., et al: ‘Efficacy and safety of intratumoral thermotherapy using magnetic iron-oxide nanoparticles combined with external beam radiotherapy on patients with recurrent glioblastoma multiforme’, J. Neurooncol., 2011, 103, (2), pp. 317324.
    21. 21)
      • 4. Cherukuri, P., Glazer, E.S., Curley, S.A.: ‘Targeted hyperthermia using metal nanoparticles’, Adv. Drug Deliv. Rev., 2010, 62, (3), pp. 339345.
    22. 22)
      • 6. Kumar, S., Daverey, A., Khalilzad-Sharghi, V., et al: ‘Theranostic fluorescent silica encapsulated magnetic nanoassemblies for in vitro mri imaging and hyperthermia’, RSC Adv., 2015, 5, (66), pp. 5318053188.
    23. 23)
      • 42. Sahu, N.K., Gupta, J., Bahadur, D.: ‘Pegylated fept-Fe3o4 composite nanoassemblies (CNAS): in vitro hyperthermia, drug delivery and generation of reactive oxygen Species (ROS)’, Dalton Trans., 2015, 44, (19), pp. 91039113.
    24. 24)
      • 15. Abenojar, E.C., Wickramasinghe, S., Bas-Concepcion, J., et al: ‘Structural effects on the magnetic hyperthermia properties of iron oxide nanoparticles’, Prog. Nat. Sci.: Mater. Int., 2016, 26, (5), pp. 440448.
    25. 25)
      • 35. Marins, J.A., Montagnon, T., Ezzaier, H., et al: ‘Colloidal stability of aqueous suspensions of polymer-coated iron oxide nanorods: implications for biomedical applications’, ACS Appl. Nano Mater., 2018, 1, (12), pp. 67606772.
    26. 26)
      • 1. Torre, L.A., Bray, F., Siegel, R.L., et al: ‘Global cancer statistics, 2012’, CA-Cancer J. Clin., 2015, 65, (2), pp. 87108.
    27. 27)
      • 41. Curry, D., Cameron, A., MacDonald, B., et al: ‘Adsorption of doxorubicin on citrate-capped gold nanoparticles: insights into engineering potent chemotherapeutic delivery systems’, Nanoscale, 2015, 7, (46), pp. 1961119619.
    28. 28)
      • 22. Alkilany, A.M., Thompson, L.B., Boulos, S.P., et al: ‘Gold nanorods: their potential for photothermal therapeutics and drug delivery, tempered by the complexity of their biological interactions’, Adv. Drug Deliv. Rev., 2012, 64, (2), pp. 190199.
    29. 29)
      • 44. Suriyanto. Ng, E.Y., Kumar, S.D.: ‘Physical mechanism and modeling of heat generation and transfer in magnetic fluid hyperthermia through Neelian and Brownian relaxation: a review’, Biomed. Eng. Online, 2017, 16, (1), p. 36.
    30. 30)
      • 31. Leung, K., Wáng, Y.-X.: ‘Mn-Fe nanowires towards cell labeling and magnetic resonance imaging’ in Lupu, N. (Ed.): Nanowires science and technology (Intech, Croatia, 2010), pp. 331344.
    31. 31)
      • 2. ‘World Health Organization, Cancer Fact Sheet, World Health Organization, Geneva, Switzerland’, 2018.
    32. 32)
      • 45. Simeonidis, K., Morales, M.P., Marciello, M., et al: ‘In-situ particles reorientation during magnetic hyperthermia application: shape matters twice’, Sci. Rep., 2016, 6, (1), p. 38382.
    33. 33)
      • 13. Chandunika, R.K., Rajagopalan, V., Niroj Kumar, S.: ‘Magnetic hyperthermia application of MnFe2O4 nanostructures processed through solvents with the varying boiling point’, Mater. Res. Express, 2020, 7, (6), p. 064002, https://doi.org/10.1088/2053-1591/ab955e.
    34. 34)
      • 21. Geng, Y., Dalhaimer, P., Cai, S., et al: ‘Shape effects of filaments versus spherical particles in flow and drug delivery’, Nat. Nanotechnol., 2007, 2, (4), pp. 249255.
    35. 35)
      • 5. Tseng, H.-Y., Lee, G.-B., Lee, C.-Y., et al: ‘Localised heating of tumours utilising injectable magnetic nanoparticles for hyperthermia cancer therapy’, IET Nanobiotechnol., 2009, 3, (2), pp. 4654.
    36. 36)
      • 23. Huang, X., Li, L., Liu, T., et al: ‘The shape effect of mesoporous silica nanoparticles on biodistribution, clearance, and biocompatibility in vivo’, ACS Nano, 2011, 5, (7), pp. 53905399.
    37. 37)
      • 36. Li, C., Feng, K., Xie, N., et al: ‘Mesoporous silica-coated gold nanorods with designable anchor peptides for chemo-photothermal cancer therapy’, ACS Appl. Nano Mater., 2020, 3, (6), pp. 50705078.
    38. 38)
      • 9. Lu, M., Cohen, M.H., Rieves, D., et al: ‘Fda report: ferumoxytol for intravenous iron therapy in adult patients with chronic kidney disease’, Am. J. Hematol., 2010, 85, (5), pp. 315319.
    39. 39)
      • 25. Jung, J., Song, K., Bae, D.R., et al: ‘Β-FeOOH nanorod bundles with highly enhanced round-trip efficiency and extremely low overpotential for lithium air batteries’, Nanoscale, 2013, 5, (23), pp. 1184511849.
    40. 40)
      • 7. Riegler, J., Wells, J.A., Kyrtatos, P.G., et al: ‘Targeted magnetic delivery and tracking of cells using a magnetic resonance imaging system’, Biomaterials, 2010, 31, (20), pp. 53665371.
    41. 41)
      • 24. Mourdikoudis, S., Liz-Marzán, L.M.: ‘Oleylamine in nanoparticle synthesis’, Chem. Mater., 2013, 25, (9), pp. 14651476.
    42. 42)
      • 32. Vamvakidis, K., Katsikini, M., Sakellari, D., et al: ‘Reducing the inversion degree of Mnfe2o4 nanoparticles through synthesis to enhance magnetization: evaluation of their 1 (H) NMR relaxation and heating efficiency’, Dalton Trans., 2014, 43, (33), pp. 1275412765.
    43. 43)
      • 11. Li, W., Lee, S.S., Wu, J., et al: ‘Shape and size controlled synthesis of uniform iron oxide nanocrystals through new non-hydrolytic routes’, Nanotechnology, 2016, 27, (32), p. 324002.
    44. 44)
      • 20. Kolhar, P., Anselmo, A.C., Gupta, V., et al: ‘Using shape effects to target antibody-coated nanoparticles to lung and brain endothelium’, Proc. Natl. Acad. Sci., 2013, 110, (26), pp. 1075310758.
    45. 45)
      • 14. Rajan, S.A., Sharma, M., Sahu, N.K.: ‘Water-to-peg variation: morphology and hyperthermic behaviour of iron oxide’, J. Supercond. Novel Magn., 2020, 33, (9), pp. 16031609.
    46. 46)
      • 46. Das, R., Alonso, J., Nemati Porshokouh, Z., et al: ‘Tunable high aspect ratio iron oxide nanorods for enhanced hyperthermia’, J. Phys. Chem. C, 2016, 120, (18), pp. 1008610093.
    47. 47)
      • 37. Sánchez-Cabezas, S., Montes-Robles, R., Gallo, J., et al: ‘Combining magnetic hyperthermia and dual T1/T2 Mr imaging using highly versatile iron oxide nanoparticles’, Dalton Trans., 2019, 48, (12), pp. 38833892.
    48. 48)
      • 3. Sahu, N.K., Gupta, J., Bahadur, D.: ‘Pegylated FePt–Fe3O4 composite nanoassemblies (cnas): in vitro hyperthermia, drug delivery and generation of reactive oxygen species (ros)’, Dalton Trans., 2015, 44, (19), pp. 91039113.
    49. 49)
      • 10. Daou, T.J., Pourroy, G., Bégin-Colin, S., et al: ‘Hydrothermal synthesis of monodisperse magnetite nanoparticles’, Chem. Mater., 2006, 18, (18), pp. 43994404.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-nbt.2020.0098
Loading

Related content

content/journals/10.1049/iet-nbt.2020.0098
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading