access icon free Development of magnetosomes-based biosensor for the detection of Listeria monocytogenes from food sample

Listeriosis through contaminated food is one of the leading causes of premature deaths in pregnant women and new born babies. Here, the authors have developed a magnetosomes-based biosensor for the rapid, sensitive, specific and cost-effective detection of Listeria monocytogenes from food sample. Magnetosomes were extracted from Magnetospirillum sp. RJS1 and then directly bound to anti-Listeriolysin antibody (0.25–1 µg/ml), confirmed in spectroscopy. Listeriolysin (LLO) protein (0.01–7 µg/ml) was optimised in enzyme-linked immunosorbent assay. Magnetosomes was conjugated with LLO antibody (0.25 µg/ml) in optimum concentration to detect LLO protein (0.01 µg/ml). Magnetosomes–LLO antibody complex was 25% cost effective. The magnetosomes–LLO antibody complex was directly stabilised on screen printed electrode using external magnet. The significant increase in resistance (R CT value) on the electrode surface with increase in concentration of LLO protein was confirmed in impedance spectroscopy. The L. monocytogenes contaminated milk and water sample were processed and extracted LLO protein was detected in the biosensor. The specificity of the biosensor was confirmed in cross-reactivity assay with other food pathogens. The detection limit of 101 Cfu/ml in both water and milk sample manifests the sensitive nature of the biosensor. The capture efficiency and field emission scanning electron microscopy confirmed positive interaction of Listeria cells with magnetosomes–antibody complex.

Inspec keywords: enzymes; biosensors; contamination; cost reduction; microorganisms; separation; field emission scanning electron microscopy; dairy products; magnets; electric resistance; electrodes; food safety; proteins

Other keywords: Magnetospirillum sp. RJS1; RCT value; electrode surface; listeriosis; impedance spectroscopy; LLO protein; Listeria monocytogenes; magnetosomes-based biosensor; enzyme-linked immunosorbent assay; LLO antibody complex; field emission scanning electron microscopy; anti-Listeriolysin antibody; extraction process; monocytogenes contaminated milk; screen printed electrode; food pathogens; sensitive cost-effective detection; contaminated food; electric resistance; magnet

Subjects: Financial management; Biosensors; Industrial processes; Biosensors; Food industry; Products and commodities; Health and safety aspects; Biotechnology industry

References

    1. 1)
      • 28. Yang, Z., Zong, X., Ye, Z., et al: ‘The application of complex multiple forklike ZnO nanostructures to rapid and ultrahigh sensitive hydrogen peroxide biosensors’, Biomaterials, 2010, 31, (29), pp. 75347541. Available at https://doi.org/10.1016/j.biomaterials.2010.06.019.
    2. 2)
      • 26. Skottrup, P.D., Nicolaisen, M., Justesen, A.F.: ‘Towards on-site pathogen detection using antibody-based sensors’, Biosens. Bioelectron., 2008, 24, (3), pp. 339348.
    3. 3)
      • 45. Setterington, E.B., Alocilja, E.C.: ‘Electrochemical biosensor for rapid and sensitive detection of magnetically extracted bacterial pathogens’, Biosensors, 2012, 2, (1), pp. 1531.
    4. 4)
      • 31. Yang, X., Zhou, X., Zhu, M., et al: ‘Sensitive detection of Listeria monocytogenes based on highly efficient enrichment with vancomycin-conjugated brush-like magnetic nano-platforms’, Biosens. Bioelectron., 2017, 91, pp. 238245.
    5. 5)
      • 12. Sarangi, L.N., Panda, H.K., Priyadarshini, A., et al: ‘Prevalence of Listeria species in milk samples of cattle of Odisha’, Indian J. Comp. Microbiol. Immunol. Infect. Dis, 2009, 30, (2), pp. 135136.
    6. 6)
      • 42. Wu, H., Zuo, Y., Cui, C., et al: ‘Rapid quantitative detection of brucella melitensis by a label-free impedance immunosensor based on a gold nanoparticle-modified screen-printed carbon electrode’, Sensors, 2013, 13, (7), pp. 85518563.
    7. 7)
      • 22. Ohk, S.H., Koo, O.K., Sen, T., et al: ‘Antibody–aptamer functionalized fibre-optic biosensor for specific detection of Listeria monocytogenes from food’, J. Appl. Microbiol., 2010, 109, (3), pp. 808817.
    8. 8)
      • 39. Hungate, R.E.: ‘The anaerobic mesophilic cellulolytic bacteria’, Bacteriol. Rev., 1950, 14, (1), p. 1.
    9. 9)
      • 64. Rudi, K., Naterstad, K., Drømtorp, S.M., et al: ‘Detection of viable and dead Listeria monocytogenes on gouda-like cheeses by real-time PCR’, Lett. Appl. Microbiol., 2005, 40, (4), pp. 301306.
    10. 10)
      • 16. Kayal, S., Charbit, A.: ‘Listeriolysin O: a key protein of Listeria monocytogenes with multiple functions’, FEMS Microbiol. Rev., 2006, 30, (4), pp. 514529.
    11. 11)
      • 59. Oaew, S., Charlermroj, R., Pattarakankul, T., et al: ‘Gold nanoparticles/horseradish peroxidase encapsulated polyelectrolyte nanocapsule for signal amplification in Listeria monocytogenes detection’, Biosens. Bioelectron., 2012, 34, (1), pp. 238243.
    12. 12)
      • 20. Kérouanton, A., Marault, M., Petit, L., et al: ‘Evaluation of a multiplex PCR assay as an alternative method for Listeria monocytogenes serotyping’, J. Microbiol. Methods, 2010, 80, (2), pp. 134137.
    13. 13)
      • 43. Varshney, M., Yang, L., Su, X.L., et al: ‘Magnetic nanoparticle-antibody conjugates for the separation of Escherichia coli O157: H7 in ground beef’, J. Food Prot., 2005, 68, (9), pp. 18041811.
    14. 14)
      • 41. Woo, M.A., Kim, M.I., Jung, J.H., et al: ‘A novel colorimetric immunoassay utilizing the peroxidase mimicking activity of magnetic nanoparticles’, Int. J. Mol. Sci., 2013, 14, (5), pp. 999910014.
    15. 15)
      • 4. European Food Safety Authority and European Centre for Disease Prevention and Control (EFSA and ECDC): ‘The European Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2017’, EFSA J., 2018, 16, (12), p. e05500.
    16. 16)
      • 66. Cheng, N., Xu, Y., Yan, X., et al: ‘An advanced visual qualitative and EVA green-based quantitative isothermal amplification method to detect Listeria Monocytogenes’, J. Food Saf., 2016, 36, (2), pp. 237246.
    17. 17)
      • 1. Papademas, P., Aspri, M.: ‘Dairy pathogens: characteristics and impact’, Dairy Microbiol., Pract. Approach, 2015, 16, pp. 69113.
    18. 18)
      • 38. Revathy, T., Jacob, J.J., Jayasri, M.A., et al: ‘Isolation and characterization of Magnetospirillum from saline lagoon’, World J. Microbiol. Biotechnol., 2016, 32, p. 109.
    19. 19)
      • 56. Ambrosi, A., Airo, F., Merkoçi, A.: ‘Enhanced gold nanoparticle based ELISA for a breast cancer biomarker’, Anal. Chem., 2009, 82, (3), pp. 11511156.
    20. 20)
      • 32. Hussain, M.S., Hess, L.K., Gearhart, M.J., et al: ‘In vitro toxicity of nanoparticles in BRL 3A rat liver cells’, Toxicol. In Vitro, 2005, 19, pp. 975983.
    21. 21)
      • 11. Sharma, S., Sharma, V., Dahiya, D.K., et al: ‘Prevalence, virulence potential, and antibiotic susceptibility profile of Listeria monocytogenes isolated from bovine raw milk samples obtained from Rajasthan, India’, Foodborne Pathog. Dis., 2017, 14, (3), pp. 132140.
    22. 22)
      • 24. Liu, H.B., Du, X.J., Zang, Y.X., et al: ‘SERS-based lateral flow strip biosensor for simultaneous detection of Listeria monocytogenes and Salmonella enterica serotype Enteritidis’, J. Agric. Food Chem., 2017, 65, (47), pp. 1029010299.
    23. 23)
      • 65. Chen, J., Tang, J., Liu, J., et al: ‘Development and evaluation of a multiplex PCR for simultaneous detection of five foodborne pathogens’, J. Appl. Microbiol., 2012, 112, (4), pp. 823830.
    24. 24)
      • 27. Davis, D., Guo, X., Musavi, L., et al: ‘Gold nanoparticle-modified carbon electrode biosensor for the detection of Listeria monocytogenes’, Ind. Biotechnol., 2013, 9, (1), pp. 3136.
    25. 25)
      • 54. Arakaki, A., Nakazawa, H., Nemoto, M., et al: ‘Formation of magnetite by bacteria and its application’, J. R. Soc., Interface, 2008, 5, (26), pp. 977999.
    26. 26)
      • 62. Wang, J., Tian, B., Nascimento, V.B., et al: ‘Performance of screen-printed carbon electrodes fabricated from different carbon inks’, Electrochim. Acta, 1998, 43, (23), pp. 34593465.
    27. 27)
      • 10. Bhat, S.A., Willayat, M.M., Roy, S.S., et al: ‘Isolation, molecular detection and antibiogram of Listeria monocytogenes from human clinical cases and fish of Kashmir, India’, Comp. Clin. Path., 2013, 22, (4), pp. 661665.
    28. 28)
      • 55. Lequin, R.M.: ‘Enzyme immunoassay (EIA)/enzyme-linked immunosorbent assay (ELISA)’, Clin. Chem., 2005, 51, (12), pp. 24152418.
    29. 29)
      • 47. Heyen, U., Schüler, D.: ‘Growth and magnetosome formation by microaerophilic Magnetospirillum strains in an oxygen-controlled fermentor’, Appl. Microbiol. Biotechnol., 2003, 61, (5–6), pp. 536544.
    30. 30)
      • 3. DiMaio, H.: ‘Listeria infection in women’, Prim. Care. Update. Ob. Gyns., 2000, 7, (1), pp. 4045.
    31. 31)
      • 44. Varshney, M., Li, Y.: ‘Interdigitated array microelectrode based impedance biosensor coupled with magnetic nanoparticle–antibody conjugates for detection of Escherichia coli O157: H7 in food samples’, Biosens. Bioelectron., 2007, 22, (11), pp. 24082414.
    32. 32)
      • 15. Gedde, M.M., Higgins, D.E., Tilney, L.G., et al: ‘Role of Listeriolysin O in cell-to-cell spread of Listeria monocytogenes’, Infect Immun., 2000, 68, (2), pp. 9991003.
    33. 33)
      • 18. Schlech, IIIW.F., Acheson, D.: ‘Foodborne listeriosis’, Clin. Infect. Dis, 2000, 31, (3), pp. 770775.
    34. 34)
      • 30. Wang, W., Liu, L., Song, S., et al: ‘Identification and quantification of eight Listeria monocytogene serotypes from Listeria spp. Using a gold nanoparticle-based lateral flow assay’, Microchim. Acta, 2017, 184, (3), pp. 715724.
    35. 35)
      • 51. Hendrickson, W.A., Pähler, A., Smith, J.L., et al: ‘Crystal structure of core streptavidin determined from multiwavelength anomalous diffraction of synchrotron radiation’, Proc. Natl. Acad. Sci. U.S.A., 1989, 86, (7), pp. 21902194.
    36. 36)
      • 37. Tien, H.T., Ottova-Leitmannova, A.: ‘Membrane biophysics: as viewed from experimental bilayer lipid membranes’, vol. 5 (Elsevier, USA., 2000).
    37. 37)
      • 33. Matsunaga, T., Sakaguchi, T., Tadakoro, F.: ‘Magnetite formation by a magnetic bacterium capable of growing aerobically’, Appl. Microbiol. Biotechnol., 1991, 35, (5), pp. 651655. Available at https://doi.org/10.1007/BF00169632.
    38. 38)
      • 19. O'Grady, J., Ruttledge, M., Sedano-Balbás, S., et al: ‘Rapid detection of Listeria monocytogenes in food using culture enrichment combined with real-time PCR’, Food Microbiol., 2009, 26, (1), pp. 47.
    39. 39)
      • 36. Gorby, Y.A., Beveridge, T.J., Blakemore, R.P.: ‘Characterization of the bacterial magnetosome membrane’, J. Bacteriol., 1988, 170, (2), pp. 834841.
    40. 40)
      • 23. Chen, Q., Lin, J., Gan, C., et al: ‘A sensitive impedance biosensor based on immunomagnetic separation and urease catalysis for rapid detection of Listeria monocytogenes using an immobilization-free interdigitated array microelectrode’, Biosens. Bioelectron., 2015, 74, pp. 504511.
    41. 41)
      • 50. Kocbek, P., Obermajer, N., Cegnar, M., et al: ‘Targeting cancer cells using PLGA nanoparticles surface modified with monoclonal antibody’, J. Controlled Release, 2007, 120, (1), pp. 1826.
    42. 42)
      • 7. Selvaganapathi, R., Jeyasekaran, G., Shakila, R.J., et al: ‘Occurrence of Listeria monocytogenes on the seafood contact surfaces of Tuticorin Coast of India’, J. Food Sci. Technol., 2018, 55, (7), pp. 28082812.
    43. 43)
      • 6. Basic Information on Emerging Infectious Diseases (EIDs): ‘Listeriosis: what we should know’. World Health Organization, Regional Office of South East Asia. Available at http://www.searo.who.int/entity/emerging_diseases/Zoonoses_Listeriosis.pdf?ua=1, accessed September 2019.
    44. 44)
      • 13. Mary, M.S., Shrinithivihahshini, N.D.: ‘Prevalence of Listeria monocytogenes in temple milks offered to the devotees as sacred liquid in Tiruchirapalli, Tamilnadu, India’, Food Public Health, 2013, 3, (2), pp. 9799.
    45. 45)
      • 52. Wong, J., Chilkoti, A., Moy, V.T.: ‘Direct force measurements of the streptavidin–biotin interaction’, Biomol. Eng., 1999, 16, (1), pp. 4555.
    46. 46)
      • 60. Karyakin, A.A., Presnova, G.V., Rubtsova, M.Y., et al: ‘Oriented immobilization of antibodies onto the gold surfaces via their native thiol groups’, Anal. Chem., 2000, 72, (16), pp. 38053811.
    47. 47)
      • 49. Hergt, R., Hiergeist, R., Zeisberger, M., et al: ‘Magnetic properties of bacterial magnetosomes as potential diagnostic and therapeutic tools’, J. Magn. Magn. Mater, 2005, 293, (1), pp. 8086.
    48. 48)
      • 46. Sheikhzadeh, E., CHamsaz, M., Turner, A.P.F., et al: ‘Label-free impedimetric biosensor for Salmonella Typhimurium detection based on poly [pyrrole-co-3-carboxyl-pyrrole] copolymer supported aptamer’, Biosens. Bioelectron., 2016, 80, pp. 194200.
    49. 49)
      • 34. Wacker, R., Ceyhan, B., Alhorn, P., et al: ‘Magneto immuno-PCR: a novel immunoassay based on biogenic magnetosome nanoparticles’, Biochem. Biophys. Res. Commun., 2007, 357, (2), pp. 391396.
    50. 50)
      • 8. Das, S., Lalitha, K.V., Thampuran, N., et al: ‘Isolation and characterization of Listeria monocytogenes from tropical seafood of Kerala, India’, Ann. Microbiol., 2013, 63, (3), pp. 10931098.
    51. 51)
      • 9. Belton, B., Bush, S.R., Little, D.C.: ‘Not just for the wealthy: rethinking farmed fish consumption in the global south’, Glob. Food Sec., 2018, 16, pp. 8592.
    52. 52)
      • 25. Putzbach, W., Ronkainen, N.: ‘Immobilization techniques in the fabrication of nanomaterial-based electrochemical biosensors: A review’, Sensors, 2013, 13, (4), pp. 48114840.
    53. 53)
      • 21. Gopalan, A.I., Lee, K.P., Ragupathy, D., et al: ‘An electrochemical glucose biosensor exploiting a polyaniline grafted multiwalled carbon nanotube/perfluorosulfonate ionomer–silica nanocomposite’, Biomaterials, 2009, 30, (30), pp. 59996005. Available at https://doi.org/10.1016/j.biomaterials.2009.07.047.
    54. 54)
      • 17. Hamon, M.A., Ribet, D., Stavru, F., et al: ‘Listeriolysin O: the Swiss army knife of Listeria’, Trends Microbiol., 2012, 20, (8), pp. 360368.
    55. 55)
      • 2. Saha, M., Debnath, C., Pramanik, A.K.: ‘Listeria monocytogenes: an emerging food borne pathogen’, Int. J. Curr. Microbiol. App. Sci., 2015, 4, (11), pp. 5272.
    56. 56)
      • 67. Koubova, V., Brynda, E., Karasova, L., et al: ‘Detection of foodborne pathogens using surface plasmon resonance biosensors’, Sens. Actuators B Chem., 2001, 74, (1–3), pp. 100105.
    57. 57)
      • 63. Fluit, A.C., Torensma, R., Visser, M.J., et al: ‘Detection of Listeria monocytogenes in cheese with the magnetic immuno-polymerase chain reaction assay’, Appl. Environ. Microbiol., 1993, 59, (5), pp. 12891293.
    58. 58)
      • 5. Martinez-Rios, V., Dalgaard, P.: ‘Prevalence of Listeria monocytogenes in European cheeses: A systematic review and meta-analysis’, Food Control, 2018, 84, pp. 205214.
    59. 59)
      • 53. Amemiya, Y., Tanaka, T., Yoza, B., et al: ‘Novel detection system for biomolecules using nano-sized bacterial magnetic particles and magnetic force microscopy’, J. Biotechnol., 2005, 120, (3), pp. 308314.
    60. 60)
      • 68. Alhogail, S., Suaifan, G.A., Zourob, M.: ‘Rapid colorimetric sensing platform for the detection of Listeria monocytogenes foodborne pathogen’, Biosens. Bioelectron., 2016, 86, pp. 10611066.
    61. 61)
      • 14. Vadia, S., Arnett, E., Haghighat, A.C., et al: ‘The pore-forming toxin listeriolysin O mediates a novel entry pathway of L. monocytogenes into human hepatocytes’, PLOS Pathog., 2011, 7, (11), p. e1002356.
    62. 62)
      • 35. Bazylinski, D.A., Frankel, R.B., Heywood, B.R., et al: ‘Controlled biomineralization of magnetite (Fe (inf3) O (inf4)) and Greigite (Fe (inf3) S (inf4)) in a magnetotactic bacterium’, Appl. Environ. Microbiol., 1995, 61, (9), pp. 32323239.
    63. 63)
      • 48. Schüler, D.: ‘The biomineralization of magnetosomes in Magnetospirillum gryphiswaldense’, Int. Microbiol., 2002, 5, (4), pp. 209214.
    64. 64)
      • 29. Wang, D., Chen, Q., Huo, H., et al: ‘Efficient separation and quantitative detection of Listeria monocytogenes based on screen-printed interdigitated electrode, urease and magnetic nanoparticles’, Food Control, 2017, 73, pp. 555561.
    65. 65)
      • 58. Wang, H., Li, Y., Slavik, M.: ‘Rapid detection of Listeria monocytogenes using quantum dots and nanobeads-based optical biosensor’, J. Rapid Meth. Aut. Mic., 2007, 15, (1), pp. 6776.
    66. 66)
      • 40. Alphandéry, E., Guyot, F., Chebbi, I.: ‘Preparation of chains of magnetosomes, isolated from Magnetospirillum magneticum strain AMB-1 magnetotactic bacteria, yielding efficient treatment of tumors using magnetic hyperthermia’, Int. J. Pharm., 2012, 434, (1), pp. 444452.
    67. 67)
      • 61. Renedo, O.D., Alonso-Lomillo, M.A., Martínez, M.A.: ‘Recent developments in the field of screen-printed electrodes and their related applications’, Talanta, 2007, 73, (2), pp. 202219.
    68. 68)
      • 57. Nakamura, N., Burgess, G.J., Yagiuda, K., et al: ‘Detection and removal of escheria coli using fluorescein isothiocyanate conjugated monoclonal anibody immobilized on bacterial magnetic particles’, Anal. Chem., 1993, 65, pp. 20362039.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-nbt.2020.0091
Loading

Related content

content/journals/10.1049/iet-nbt.2020.0091
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading