Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Protective role of biosynthesised zinc oxide nanoparticles on pancreatic beta cells: an in vitro and in vivo approach

Sulphonylureas are extensively used in the treatment of type II diabetes; however, these drugs have complications of hypoglycaemia and weight gain. The current study aims at developing a potent antidiabetic drug that has lesser side effects and better management of its associated conditions. Zinc oxide nanoparticles (ZnO NPs) were synthesised using Syzygium cumini seed extract with an average size of 18.92 nm. In vitro studies on rat insulinoma (RIN-5F) cells revealed that cells treated with synthesised ZnO NPs showed a dose-dependent increase in insulin secretion. Streptozotocin-fructose-induced type II diabetic rats treated with ZnO NPS exhibited a significant reduction (p < 0.01) in the blood glucose levels, total cholesterol, triglycerides, and low-density lipoprotein levels and increase (p < 0.01) in serum insulin and liver antioxidant enzyme levels proclaiming its role as a hypoglycaemic and hypolipidaemic drug. Treatment of ZnO NPs in diabetic rats exhibited an increased number of beta cells which was responsible for its increased insulin levels and reduced glucose levels. From the overall observations, biosynthesised ZnO NPs exhibited an efficacious hypoglycaemic effect in diabetic rats, so it can be suggested as a potent antidiabetic drug.

References

    1. 1)
      • 10. Daniel, Ja., Devi, Sa.: ‘Inhibition of key digestive enzymes involved in glucose metabolism by biosynthesized zinc oxide nanoparticles from Syzygium cumini (L.): an in vitro and in silico approach’, Pharmacogn. Mag., 2019, 15, (66), p. 502.
    2. 2)
      • 21. Siddiqui, S., Sharma, B., Ram, G.: ‘Anti-hyperglycemic and anti-hyperlipemia effects of Syzygium cumini seed in alloxan induced diabetes mellitus in Swiss albino mice (Mus musculus)’, Med. Aromat. Plants, 2014, 3, (4), p. 166.
    3. 3)
      • 20. Bhuyan, Z.A., Rokeya, B., Masum, N., et al: ‘Antidiabetic effect of Syzygium cumini l. Seed on type 2 diabetic rats’, Dhaka Univ. J. Biol. Sci., 2010, 19, (2), pp. 157164.
    4. 4)
      • 26. Rink, L., Kirchner, H.: ‘Zinc-altered immune function and cytokine production’, J. Nutr., 2000, 130, (5), pp. 1407S1411S.
    5. 5)
      • 14. Graham, J.: ‘Homogenization of mammalian tissues’, Sci. World J., 2002, 2, pp. 16261629.
    6. 6)
      • 16. Kakkar, P., Das, B., Viswanathan, P.N.: ‘A modified spectrophotometric assay of superoxide dismutase’, 1984.
    7. 7)
      • 17. Hafeman, D.G., Sunde, R.A., Hoekstra, W.G.: ‘Effect of dietary selenium on erythrocyte and liver glutathione peroxidase in the rat’, J. Nutr., 1974, 104, (5), pp. 580587.
    8. 8)
      • 27. Ikewuchi, J.C., Onyeike, E.N., Uwakwe, A.A., et al: ‘Effect of aqueous extract of the leaves of Acalypha wilkesiana ‘Godseffiana’ Muell Arg (Euphorbiaceae) on the hematology, plasma biochemistry and ocular indices of oxidative stress in alloxan induced diabetic rats’, J. Ethnopharmacol., 2011, 137, (3), pp. 14151424.
    9. 9)
      • 13. Trinder, P.: ‘Determination of glucose in blood using glucose oxidase with an alternative oxygen acceptor’, Ann. Clin. Biochem., 1969, 6, (1), pp. 2427.
    10. 10)
      • 24. Zhang, Y.-N., Poon, W., Tavares, A.J., et al: ‘Nanoparticle–liver interactions: cellular uptake and hepatobiliary elimination’, J. Controlled Release, 2016, 240, pp. 332348.
    11. 11)
      • 19. Chiasson, J.L., Aris-Jilwan, N., Bélanger, R., et al: ‘Diagnosis and treatment of diabetic ketoacidosis and the hyperglycemic hyperosmolar state’, 2003.
    12. 12)
      • 3. Modi, P.: ‘Diabetes beyond insulin: review of new drugs for treatment of diabetes mellitus’, Curr. Drug Discov. Technol., 2007, 4, (1), pp. 3947.
    13. 13)
      • 22. Hussein, J., El-Banna, M., Razik, T.A., et al: ‘Biocompatible zinc oxide nanocrystals stabilized via hydroxyethyl cellulose for mitigation of diabetic complications’, Int. J. Biol. Macromol., 2018, 107, pp. 748754.
    14. 14)
      • 9. Keller, S.R.: ‘Role of the insulin-regulated aminopeptidase IRAP in insulin action and diabetes’, Biol. Pharm. Bull., 2004, 27, (6), pp. 761764.
    15. 15)
      • 18. Ohkawa, H., Ohishi, N., Yagi, K.: ‘Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction’, Anal. Biochem., 1979, 95, (2), pp. 351358.
    16. 16)
      • 7. Sun, Q., Van Dam, R.M., Willett, W.C., et al: ‘A prospective study of zinc intake and risk of type 2 diabetes in women’, Diabetes Care, 2009, 32, pp. 629634.
    17. 17)
      • 11. Umrani, R.D., Paknikar, K.M.: ‘Zinc oxide nanoparticles show antidiabetic activity in streptozotocin-induced type 1 and 2 diabetic rats’, Nanomedicine, 2014, 9, (1), pp. 89104.
    18. 18)
      • 25. Matough, F.A., Budin, S.B., Hamid, Z.A., et al: ‘The role of oxidative stress and antioxidants in diabetic complications’, Sultan Qaboos Univ. Med. J., 2012, 12, (1), p. pp. 518.
    19. 19)
      • 29. Ren, B., Qin, W., Wu, F., et al: ‘Apigenin and naringenin regulate glucose and lipid metabolism, and ameliorate vascular dysfunction in type 2 diabetic rats’, Eur. J. Pharmacol., 2016, 773, pp. 1323.
    20. 20)
      • 31. Horton, T.M., Allegretti, P.A., Lee, S., et al: ‘Zinc-chelating small molecules preferentially accumulate and function within pancreatic β cells’, Cell Chem. Biol., 2019, 26, pp. 213222.e6.
    21. 21)
      • 2. International Diabetes Federation: ‘IDF Diabetes Atlas, 8th edition.’, 2017.
    22. 22)
      • 15. Sinha, A.K.: ‘Colorimetric assay of catalase’, Anal. Biochem., 1972, 47, (2), pp. 389394.
    23. 23)
      • 8. Sakurai, H., Adachi, Y.: ‘The pharmacology of the insulinomimetic effect of zinc complexes’, Biometals, 2005, 18, (4), pp. 319323.
    24. 24)
      • 5. Ayya, N., Nalwade, V., Khan, T.N.: ‘Effect of jamun (Syzygium cumini L.) seed powder supplementation on blood glucose level of type-II diabetic subject’, Food Sci. Res. J., 2015, 6, (2), pp. 353356.
    25. 25)
      • 1. WHO: ‘Global report on diabetesWorld Health Organization, Geneva, 2016.
    26. 26)
      • 28. Akiyama, S., Katsumata, S., Suzuki, K., et al: ‘Hypoglycemic and hypolipidemic effects of hesperidin and cyclodextrin-clathrated hesperetin in Goto-Kakizaki rats with type 2 diabetes’, Biosci. Biotechnol. Biochem., 2009, 73, (12), pp. 27792782.
    27. 27)
      • 6. Jansen, J., Karges, W., Rink, L.: ‘Zinc and diabetes – clinical links and molecular mechanisms’, J. Nutr. Biochem., 2009, 20, (6), pp. 399417.
    28. 28)
      • 30. Revathy, J., Abdullah, S.S.: ‘Influence of hesperetin on glycoprotein components in diabetic rats’, Int. J. Sci. Eng. Res., 2016, 7, pp. 214220.
    29. 29)
      • 4. Morton, J.F.: ‘Fruits of warm climates’ (Julia F. Morton, Miami, FL, USA, 1987).
    30. 30)
      • 23. Singh, B.M., Palma, M.A., Nattrass, M.: ‘Multiple aspects of insulin resistance: comparison of glucose and intermediary metabolite response to incremental insulin infusion in IDDM subjects of short and long duration’, Diabetes, 1987, 36, (6), pp. 740748.
    31. 31)
      • 12. Wilson, R.D., Islam, M.S.: ‘Fructose-fed streptozotocin-injected rat: an alternative model for type 2 diabetes’, Pharmacol. Rep., 2012, 64, (1), pp. 129139.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-nbt.2020.0084
Loading

Related content

content/journals/10.1049/iet-nbt.2020.0084
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address