access icon free Zinc oxide nanoparticles augment CD4, CD8, and GLUT-4 expression and restrict inflammation response in streptozotocin-induced diabetic rats

This study evaluated the biochemical, molecular, and histopathological mechanisms involved in the hypoglycaemic effect of zinc oxide nanoparticles (ZnONPs) in experimental diabetic rats. ZnONPs were prepared by the sol–gel method and characterised by scanning and transmission electron microscopy (SEM and TEM). To explore the possible hypoglycaemic and antioxidant effect of ZnONPs, rats were grouped as follows: control group, ZnONPs treated group, diabetic group, and diabetic + ZnONPs group. Upon treatment with ZnONPs, a significant alteration in the activities of superoxide dismutase, glutathione peroxidase, and the levels of insulin, haemoglobin A1c, and the expression of cluster of differentiation 4+ (CD4+), CD8+ T cells, glucose transporter type-4 (GLUT-4), tumour necrosis factor, and interleukin-6 when compared to diabetic and their control rats. ZnONPs administration to the diabetic group showed eminent blood glucose control and restoration of the biochemical profile. This raises their active role in controlling pancreas functions to improve glycaemic status as well as the inflammatory responses. Histopathological investigations showed the non-toxic and therapeutic effect of ZnONPs on the pancreas. TEM of pancreatic tissues displayed restoration of islets of Langerhans and increased insulin-secreting granules. This shows the therapeutic application of ZnONPs as a safe anti-diabetic agent and to have a potential for the control of diabetes.

Inspec keywords: biological organs; diseases; semiconductor growth; biochemistry; molecular biophysics; II-VI semiconductors; zinc compounds; blood; nanoparticles; wide band gap semiconductors; cellular biophysics; scanning electron microscopy; tumours; sugar; nanofabrication; biomedical materials; transmission electron microscopy; nanomedicine; sol-gel processing; enzymes; patient treatment

Other keywords: experimental diabetic rats; superoxide dismutase; haemoglobin A1c; sol-gel method; GLUT-4 expression; control rats; ZnO; transmission electron microscopy; pancreatic tissues; biochemical mechanisms; blood glucose control; TEM; diabetic group; glycaemic status; inflammation response; CD4+; molecular mechanisms; streptozotocin-induced diabetic rats; histopathological mechanisms; scanning electron microscopy; interleukin-6; CD8+ T cells; SEM; antioxidant effect; pancreas functions; insulin levels; glucose transporter type-4; Langerhans islets; hypoglycaemic effect; tumour necrosis factor; insulin-secreting granules; zinc oxide nanoparticles; therapeutic effect; glutathione peroxidase; control group; differentiation 4+ T cells; safe antidiabetic agent

Subjects: Deposition from liquid phases; Nanofabrication using thin film deposition methods; Nanometre-scale semiconductor fabrication technology; Patient care and treatment; Physical chemistry of biomolecular solutions and condensed states; Nanotechnology applications in biomedicine; II-VI and III-V semiconductors; Patient care and treatment; Cellular biophysics; Deposition from liquid phases (melts and solutions); Biomedical materials; Structure of solid clusters, nanoparticles, nanotubes and nanostructured materials

References

    1. 1)
      • 11. Sun, Q., Van Dam, R.M., Willett, W.C., et al: ‘Prospective study of zinc intake and risk of type 2 diabetes in women’, Diabetes Care, 2009, 32, pp. 629634.
    2. 2)
      • 23. Schmittgen, T.D., Livak, K.J.: ‘Analyzing real-time PCR data by the comparative CT method’, Nat. Protoc., 2008, 3, p. 1101.
    3. 3)
      • 3. Kantipudi, S., Sunkara, J.R., Rallabhandi, M., et al: ‘Enhanced wound healing activity of Ag-ZnO composite NPs in Wistar albino rats’, IET Nanobiotechnol., 2018, 12, pp. 473478.
    4. 4)
      • 42. Wang, J., Wang, H.: ‘Oxidative stress in pancreatic beta cell regeneration’, Oxid. Med. Cell. Longevity, 2017, 2017 pp. 19.
    5. 5)
      • 15. Ahmed, M., Abd-Elhamid, M., Sarhan, A., et al: ‘Characteristic and thermal stimulated depolarization current of poly (vinyl chloride-co-vinyl acetate-co-2-hydroxy propyl acrylate) ZnO nanocomposite’, Glob. J. Phys., 2017, 5, pp. 585594.
    6. 6)
      • 53. Jia, Y., Zhao, Y., Li, C., et al: ‘The expression of programmed death-1 on CD4+and CD8+T lymphocytes in patients with type 2 diabetes and severe sepsis’, PLOS ONE, 2016, 11, p. e0159383.
    7. 7)
      • 37. Chen, B., Bestetti, G., Day, R., et al: ‘The synthesis and screening of a combinatorial peptide library for affinity ligands for glycosylated haemoglobin’, Biosens. Bioelectron., 1998, 13, pp. 779785.
    8. 8)
      • 5. Keyshams, N., Fatemi Tabatabaei, S.R., Najafzadehvarzi, H., et al: ‘Effect of ammonium vanadate nano-particles on experimental diabetes and biochemical factors in male Spargue-Dawley rats’, Zahedan J. Res. Med. Sci., 2013, 15, pp. 5964.
    9. 9)
      • 24. Greve, B., Beller, C., Cassens, U., et al: ‘High-grade loss of leukocytes and hematopoietic progenitor cells caused by erythrocyte-lysing procedures for flow cytometric analyses’, J. Hematother. Stem Cell Res., 2003, 12, pp. 321330.
    10. 10)
      • 54. Saari, S.M., Basri, D.F., Budin, S.B., et al: ‘Effects of Canarium odontophyllum leaves on plasma glucose and T lymphocyte population in streptozotocin-induced diabetic rats’, Saudi J. Biol. Sci., 2017, 24, pp. 320323.
    11. 11)
      • 34. Kolodziejczak-Radzimska, A., Jesionowski, T.: ‘Zinc oxide-from synthesis to application: a review’, Materials, 2014, 7, pp. 28332881.
    12. 12)
      • 39. Vargas, E., Podder, V., Carrillo Sepulveda, M.A.: ‘Physiology, glucose transporter type 4 (GLUT4)’ (StatPearls, Treasure Island (FL), 2019).
    13. 13)
      • 19. Liu, X., Hering, B., Brendel, M., et al: ‘The effect of streptozotocin on the function of fetal porcine and rat pancreatic (pro-) islets’, Exp. Clin. Endocrinol. Diabetes, 1994, 102, pp. 374379.
    14. 14)
      • 29. Jung, K.H., Lee, J.H., Park, J.W., et al: ‘Resveratrol-loaded polymeric nanoparticles suppress glucose metabolism and tumor growth in vitro and in vivo’, Int. J. Pharm., 2015, 478, pp. 251257.
    15. 15)
      • 47. Shepherd, P.R., Kahn, B.B.: ‘Glucose transporters and insulin action–implications for insulin resistance and diabetes mellitus’, N. Engl. J. Med., 1999, 341, pp. 248257.
    16. 16)
      • 17. El Hakam, S.A., El-Dafrawy, S.M., Fawzy, S., et al: ‘Structural, photocatalytic and antibacterial activity of ZnO and ZrO2 doped ZnO nanoparticles’, Chemistry, 2014, 11, p. 13.
    17. 17)
      • 4. Shaaban, M., El-Mahdy, A.M.: ‘Biosynthesis of Ag, Se, and ZnO nanoparticles with antimicrobial activities against resistant pathogens using waste isolate Streptomyces enissocaesilis’, IET Nanobiotechnol., 2018, 12, pp. 741747.
    18. 18)
      • 9. Shahraki, F., Tabrizi, M.H., Moghaddam, M.N., et al: ‘Bio-green synthesis ZnO-NPs in Brassica napus pollen extract: biosynthesis, antioxidant, cytotoxicity and pro-apoptotic properties’, IET Nanobiotechnol., 2019, 13, pp. 471476.
    19. 19)
      • 22. Paglia, D.E., Valentine, W.N.: ‘Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase’, J. Lab. Clin. Med., 1967, 70, pp. 158169.
    20. 20)
      • 43. Arai, K., Iizuka, S., Tada, Y., et al: ‘Increase in the glucosylated form of erythrocyte Cu–Zn-superoxide dismutase in diabetes and close association of the nonenzymatic glucosylation with the enzyme activity’, Biochim. Biophys. Acta, Gen. Subj., 1987, 924, pp. 292296.
    21. 21)
      • 26. Reynolds, E.S.: ‘The use of lead citrate at high pH as an electron-opaque stain in electron microscopy’, J. Cell Biol., 1963, 17, p. 208.
    22. 22)
      • 2. Nayak, P.S., Pradhan, S., Arakha, M., et al: ‘Silver nanoparticles fabricated using medicinal plant extracts show enhanced antimicrobial and selective cytotoxic propensities’, IET Nanobiotechnol., 2019, 13, pp. 193201.
    23. 23)
      • 6. Lewicki, S., Zdanowski, R., Krzyzowska, M., et al: ‘The role of chromium III in the organism and its possible use in diabetes and obesity treatment’, Ann. Agric. Environ. Med., 2014, 21, (2), pp. 331335.
    24. 24)
      • 44. Toma, A., Makonnen, E., Yimer, G.: ‘Role of zinc in diabetes mellitus, oxidative stress and other human healthy’, Am. J. Res. Commun., 2013, 1, (11), pp. 411426.
    25. 25)
      • 14. Jansen, J., Karges, W., Rink, L.: ‘Zinc and diabetes—clinical links and molecular mechanisms’, J. Nutr. Biochem., 2009, 20, pp. 399417.
    26. 26)
      • 27. Tiwari, P.: ‘Recent trends in therapeutic approaches for diabetes management: a comprehensive update’, J. Diabetes Res., 2015, 2015, pp. 111.
    27. 27)
      • 52. Csiszar, A., Smith, K., Labinskyy, N., et al: ‘Resveratrol attenuates TNF-alpha-induced activation of coronary arterial endothelial cells: role of NF-kappaB inhibition’, Am. J. Physiol. Heart Circ. Physiol., 2006, 291, pp. 16941699.
    28. 28)
      • 18. Saravanan, R., Gupta, V.K., Narayanan, V., et al: ‘Comparative study on photocatalytic activity of ZnO prepared by different methods’, J. Mol. Liq., 2013, 181, pp. 133141.
    29. 29)
      • 45. Blum, J., Fridovich, I.: ‘Inactivation of glutathione peroxidase by superoxide radical’, Arch. Biochem. Biophys., 1985, 240, pp. 500508.
    30. 30)
      • 49. Burke, A.P., Kolodgie, F.D., Zieske, A., et al: ‘Morphologic findings of coronary atherosclerotic plaques in diabetics: a post-mortem study’, Arterioscler. Thromb. Vasc. Biol., 2004, 24, pp. 12661271.
    31. 31)
      • 1. Jayakrishnapillai, P., Nair, S.V., Kamalasanan, K.: ‘Current trend in drug delivery considerations for subcutaneous insulin depots to treat diabetes’, Colloids Surf. B, Biointerfaces, 2017, 153, pp. 123131.
    32. 32)
      • 35. Smijs, T.G., Pavel, S.: ‘Titanium dioxide and zinc oxide nanoparticles in sunscreens: focus on their safety and effectiveness, nanotechnology’, Sci. Appl., 2011, 4, pp. 95112.
    33. 33)
      • 13. Alkaladi, A., Abdelazim, A., Afifi, M.: ‘Antidiabetic activity of zinc oxide and silver nanoparticles on streptozotocin-induced diabetic rats’, Int. J. Mol. Sci., 2014, 15, pp. 20152023.
    34. 34)
      • 25. Bancroft, J.D., Stevens, A.: ‘Theory and practice of histological techniques’ (Churchill Livingstone, Edinburgh, 1990, 3rd edn.).
    35. 35)
      • 16. El-Dafrawy, S.M., Fawzy, S., Hassan, S.M.: ‘Preparation of modified nanoparticles of zinc oxide for removal of organic and inorganic pollutant’, Trends Appl. Sci. Res, 2016, 12, pp. 19.
    36. 36)
      • 12. Rungby, J.: ‘Zinc, zinc transporters and diabetes’, Diabetologia, 2010, 53, pp. 15491551.
    37. 37)
      • 48. Huang, S., Czech, M.P.: ‘The GLUT4 glucose transporter’, Cell Metab., 2007, 5, pp. 237252.
    38. 38)
      • 7. Naghsh, N., Kazemi, S.: ‘Effect of nano-magnesium oxide on glucose concentration and lipid profile in diabetic laboratory mice’, Iran. J. Pharm. Sci., 2014, 10, pp. 6368.
    39. 39)
      • 33. Yih, T., Al-Fandi, M.: ‘Engineered nanoparticles as precise drug delivery systems’, J. Cell. Biochem., 2006, 97, pp. 11841190.
    40. 40)
      • 21. Nishikimi, M., Roa, N., Yogi, K.: ‘The occurrence of superoxide anion in the reaction of reduced phenazine methosulfate and molecular oxygen’, Biochem. Biophys. Res Commun., 1972, 46, (2), pp. 849854.
    41. 41)
      • 41. Meyer, J.A., Spence, D.M.: ‘A perspective on the role of metals in diabetes: past findings and possible future directions’, Metallomics, 2009, 1, pp. 3241.
    42. 42)
      • 36. Sherly, E., Vijaya, J.J., Selvam, N.C.S., et al: ‘Microwave assisted combustion synthesis of coupled ZnO–ZrO2 nanoparticles and their role in the photocatalytic degradation of 2,4-dichlorophenol’, Ceram. Int., 2014, 40, pp. 56815691.
    43. 43)
      • 31. Sunil, C., Agastian, P., Kumarappan, C., et al: ‘In vitro antioxidant, antidiabetic and antilipidemic activities of Symplocos cochinchinensis (Lour.) S. Moore bark’, Food Chem. Toxicol., 2012, 50, pp. 15471553.
    44. 44)
      • 55. Tomita, T.: ‘Apoptosis of pancreatic beta-cells in type 1 diabetes’, Bosn. J. Basic Med. Sci., 2017, 17, pp. 183193.
    45. 45)
      • 40. Mocchegiani, E., Giacconi, R., Malavolta, M.: ‘Zinc signalling and subcellular distribution: emerging targets in type 2 diabetes’, Trends Mol. Med., 2008, 14, pp. 419428.
    46. 46)
      • 38. El-Gharbawy, R.M., Emara, A.M., Abu-Risha, S.E.-S.: ‘Zinc oxide nanoparticles and a standard antidiabetic drug restore the function and structure of beta cells in type-2 diabetes’, Biomed. Pharmacother., 2016, 84, pp. 810820.
    47. 47)
      • 51. Spranger, J., Kroke, A., Möhlig, M., et al: ‘Inflammatory cytokines and the risk to develop type 2 diabetes: results of the prospective population-based European prospective investigation into cancer and nutrition (EPIC)-potsdam study’, Diabetes, 2003, 52, pp. 812817.
    48. 48)
      • 20. Trinder, P.: ‘Determination of glucose in blood using glucose oxidase with an alternative oxygen acceptor’, Ann. Clin. Biochem., 1969, 6, pp. 2427.
    49. 49)
      • 46. Al-Azzawie, H.F., Yaaqoob, L., Alchalabi, S.: ‘Hypoglycemic and antioxidant effects of zinc oxide nanoparticles in alloxan-induced diabetes rats’, Int. J. Adv. Res., 2016, 4, (4), pp. 13291338.
    50. 50)
      • 8. Kamal, M., Khairy, M., ELSadek, N., et al: ‘Therapeutic efficacy of zinc oxide nanoparticles in diabetic rats’, Slov. Vet. Res., 2019, 56, pp. 187194.
    51. 51)
      • 50. Zahran, A., Essa, E.S., Abd Elazeem, W.F.: ‘Study of serum tumor necrosis factor alpha and interleukin 6 in type 2 diabetic patients with albuminuria’, Life Sci. J., Acta Zhengzhou Univ. Overseas Ed., 2012, 9, pp. 877882.
    52. 52)
      • 28. Petters, C., Dringen, R.: ‘Comparison of primary and secondary rat astrocyte cultures regarding glucose and glutathione metabolism and the accumulation of iron oxide nanoparticles’, Neurochem. Res., 2014, 39, pp. 4658.
    53. 53)
      • 30. Lai, X., Wei, Y., Zhao, H., et al: ‘The effect of Fe2O3 and ZnO nanoparticles on cytotoxicity and glucose metabolism in lung epithelial cells’, J. Appl. Toxicol., 2015, 35, pp. 651664.
    54. 54)
      • 10. Umrani, R.D., Paknikar, K.M.: ‘Zinc oxide nanoparticles show antidiabetic activity in streptozotocin-induced type 1 and 2 diabetic rats’, Nanomedicine, 2014, 9, pp. 89104.
    55. 55)
      • 32. Lenzen, S.: ‘The mechanisms of alloxan- and streptozotocin-induced diabetes’, Diabetologia, 2008, 51, pp. 216226.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-nbt.2020.0079
Loading

Related content

content/journals/10.1049/iet-nbt.2020.0079
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading