access icon free Green synthesis of AgCl/Ag3PO4 nanoparticle using cyanobacteria and assessment of its antibacterial, colorimetric detection of heavy metals and antioxidant properties

In this study, the extract of two strains of cyanobacteria was used for the synthesis of silver nanoparticles (NPs). UV–vis spectroscopy, X-ray diffraction, dynamic light scattering and field emission scanning electron microscopy (FESEM) analyses were carried out to characterise the NPs. The antioxidant activity and heavy metal detection properties were investigated; moreover, their minimum inhibitory concentration and minimum bactericidal concentration against the multi-drug resistant bacteria were determined. The most abundant materials in these extracts were carbohydrates, so the biosynthesis of NPs using exopolysaccharide (EPS) was also investigated. The surface plasmon resonance of NPs had a peak at 435 nm and EPS NPs at 350–450 nm. The NPs produced by Nostoc sp. IBRC-M5064 extract revealed the face-centred cubic (fcc) structure of AgCl, while NPs of N. pruniforme showed the fcc crystalline structure of Ag3PO4 and AgCl. The FESEM showed the spherical shape of these NPs. The AgCl/Ag3PO4 colloid, in comparison with AgCl, showed better antioxidant activity and antibacterial effect. The heavy metal detection analysis of NPs revealed that the NPs of both stains involved in Hg (NO3)2 detection.

Inspec keywords: microorganisms; X-ray diffraction; field emission scanning electron microscopy; ultraviolet spectra; colloids; nanosensors; visible spectra; chemical sensors; surface plasmon resonance; nanofabrication; drugs; antibacterial activity; light scattering; nanoparticles; silver compounds; silver; biochemistry

Other keywords: X-ray diffraction analysis; colorimetric detection; inhibitory concentration; FESEM; spherical shape; exopolysaccharide; Nostoc sp. IBRC-M5064 extract; antibacterial effect; AgCl-Ag3PO4; antibacterial detection; cyanobacteria; silver nanoparticle synthesis; antioxidant activity; multidrug resistant bacteria; Ag; heavy metal detection analysis; face-centred cubic crystalline structure; UV-visible spectroscopy analysis; dynamic light scattering; field emission scanning electron microscopy analysis; surface plasmon resonance; wavelength 350.0 nm to 450.0 nm

Subjects: Physical chemistry of biomolecular solutions and condensed states; Optical properties of other inorganic semiconductors and insulators (thin films, low-dimensional and nanoscale structures); Visible and ultraviolet spectra (condensed matter); Other methods of nanofabrication; Chemical sensors; Microsensors and nanosensors; Chemical sensors; Colloids; Structure of solid clusters, nanoparticles, nanotubes and nanostructured materials; Collective excitations (surface states)

References

    1. 1)
      • 34. Yemm, E.W, Cocking, E.C, Ricketts, R.E.: ‘The determination of amino-acids with ninhydrin’, Analyst, 1955, 948, (1955), pp. 209214.
    2. 2)
      • 10. Stanier, R.Y., Deruelles, J., Rippka, R., et al: ‘Generic assignments, strain histories and properties of pure cultures of Cyanobacteria’, Gen. Microbiol., 1979, 111, (1), pp. 161.
    3. 3)
      • 6. Hotze, E.M., Lowry, G.V., Brown, G.E.: ‘Environmental transformations of silver nanoparticles: impact on stability and toxicity’, Environ. Sci. Technol., 2012, 46, (13), pp. 69006914.
    4. 4)
      • 9. Holade, Y., Hickey, D.P, Minteer, S.D.: ‘Halide-regulated growth of electrocatalytic metal nanoparticles directly onto a carbon paper electrode’, Mater. Chem. A, 2016, 4, (43), pp. 1715417162.
    5. 5)
      • 14. Bhople, S., Gaikwad, S., Deshmukh, S., et al: ‘Myxobacteris-mediated synthesis of silver nanoparticles and their impregnation in wrapping paper used for enhancing shelf life of apples’, IET Nanobiotechnol., 2016, 10, (6), pp. 389394.
    6. 6)
      • 43. Maizura, M., Aminah, A., Wan Aida, W.M.: ‘Total phenolic content and antioxidant activity of kesum (Polygonum minus), ginger (Zingiber officinale) and turmeric (Curcuma longa) extract’, Int. Food Res. J., 2011, 18, (2), pp. 529534.
    7. 7)
      • 35. Sadasivam, S., Manickam, A.:Biochemical methods for agricultural sciences’, vol. 7, (2), (Wiley Eastern Ltd., New Delhi, 1997), pp. 124126.
    8. 8)
      • 46. Galhan, V., Santos, H., Oliveira, M., et al: ‘Changes in fatty acid 373 profile and antioxidant systems in a Nostoc muscorum strain exposed to the herbicide bentazon’, Process. Biochem., 2011, 46, (11), PP. pp. 21522162.
    9. 9)
      • 42. CLSI: ‘Methods for determining bactericidal activity of antimicrobial agents; approved guideline- CLSI document M26A’ (Clinical and Laboratory Standards Institute, Wayne, PA, 1999), http://www.clsi.org/.
    10. 10)
      • 33. Shah, M., Fawcett, D., Sharma, S., et al: ‘Green synthesis of metallic nanoparticles via biological entities’, Materials. (Basel), 2015, 8, (11), pp. 72787308.
    11. 11)
      • 25. Gallón, S.M., Alpaslan, E., Wang, M., et al: ‘Characterization and study of the antibacterial mechanisms of silver nanoparticles prepared with microalgal exopolysaccharides’, Mater. Sci. Eng. C. Mater. Biol. Appl., 2019, 99, (1), pp. 685695.
    12. 12)
      • 48. Entesar, A., Ekbal, H., Amel, F., et al: ‘Biosynthesis of silver nanoparticles by Spirulina’, Glob. Adv. Res. J. Microbiol., 2015, 4, (4), pp. 3649.
    13. 13)
      • 15. Busi, S., Rajkumari, J., Ranjan, B., et al: ‘Green rapid biogenic synthesis of bioactive silver nanoparticles (AgNPs) using Pseudomonas aeruginosa’, IET Nanobiotechnol., 2014, 8, (4), pp. 267274.
    14. 14)
      • 41. CLSI: ‘Clinical and laboratory standards institute (CLSI)’, 2010, 23, (2), pp. 117, http://www.clsi.org/.
    15. 15)
      • 16. Li, G., He, D., Qian, Y., et al: ‘Fungus-mediated green synthesis of silver nanoparticles using Aspergillus terreus’, Int. J. Mol. Sci., 2012, 13, (1), pp. 466476.
    16. 16)
      • 24. Patel, K., Bharatiya, B., Mukherjee, T., et al: ‘Role of stabilizing agents in formation of stable silver nanoparticles in aqueous solution: characterization and stability study’, Disper. Sci. Technol., 2016, 38, (5), pp. 626631.
    17. 17)
      • 30. Moore, L.R, Coe, A., Zinser, E.R., et al: ‘Culturing the marine Cyanobacterium Prochlorococcus’, Limnol. Oceanogr. Methods, 2007, 5, (10), pp. 353362.
    18. 18)
      • 27. Vanlalveni, C., Rajkumari, K., Biswas, A., et al: ‘Green synthesis of silver nanoparticles using Nostoc linckia and its antimicrobial activity: a novel biological approach’, Bionanoscience, 2018, 8, (2), pp. 624631.
    19. 19)
      • 39. Dubois, M., Gilles, K.A., Hamilton, J.K., et al: ‘Colorimetric method for determination of sugars and related substances’, Anal. Chem., 1956, 28, (3), pp. 350356.
    20. 20)
      • 37. Marinova, D., Ribarova, F., Atanassova, M.: ‘Total phenolic and total flavanoids in Bulgarian fruits and vegetables’, J. Univ. Chem. Technol. Metall., 2005, 40, (3), pp. 255260.
    21. 21)
      • 13. Rezaii Somee, L., Ghadam, P., Abdi-Ali, A., et al: ‘Biosynthesised AgCl NPs using Bacillus sp. 1/11 and evaluation of their cytotoxic activity and antibacterial and antibiofilm effects on multi-drug resistant bacteria’, IET Nanobiotechnol., 2018, 12, (6), pp. 764772.
    22. 22)
      • 21. Rashmi, V., Sanjay, K.: ‘Green synthesis, characterization and bioactivity of plant-mediated silver nanoparticles using Decalepis hamiltonii root extract’, IET Nanobiotechnol., 2017, 11, (3), pp. 247254.
    23. 23)
      • 11. Sahayaraj, K., Rajesh, S.: ‘Bionanoparticles: synthesis and antimicrobial applications’, in Méndez-Vilas, A. (Ed.): ‘Science against microbial pathogens: communicating current research and technological advances’, 2011, (Badajoz, Spain, 3th edn.), pp. 228244.
    24. 24)
      • 8. Rahimi, M., Hosseini, M.R., Bakhshi, M., et al: ‘Biosynthesis of silver-phosphate nanoparticles using the extracellular polymeric substance of Sporosarcina pasteurii’, Biorheol. Adv. Biomech. Eng., 2017, 11, (2), pp. 108111.
    25. 25)
      • 51. Morsy, F., Nivien, M., Nafady, A., et al: ‘Green synthesis of silver nanoparticles by water soluble fraction of the extracellular polysaccharides/matrix of the cyanobacterium Nostoc Commune and its application as a potent fungal surface sterilizing agent of seed crops’, Univers. J. Microbiol. Res., 2014, 2, (2), pp. 3643.
    26. 26)
      • 31. Jeena, J., Pradhan, N., Prasad, B., et al: ‘Biosynthesis and characterization of silver nanoparticles using microalga Chlorococcum Humicola’, Int. J. Nanomater Biostruct., 2013, 3, (1), pp. 18.
    27. 27)
      • 40. Somogyi, M.J.: ‘Notes on sugar determination’, J. Biol. Chem., 1952, 195, (1), pp. 1923.
    28. 28)
      • 5. Janata, E., Gmbh, H.B.: ‘Solar energy for Schung B. Structure of the trimer silver cluster Ag32+’, Phys. Chem. B, 2003, 107, (30), pp. 73347336.
    29. 29)
      • 12. Jime, V.M.: ‘The greener synthesis of nanoparticles’, Trend Biotechnol., 2013, 31, (4), pp. 240248.
    30. 30)
      • 7. Mitra, S., Jew, A.D., Badireddy, A.R.: ‘Effect of chloride on the dissolution rate of silver nanoparticles and toxicity to E. coli’, Environ. Sci. Technol., 2013, 47, (11), pp. 57385745.
    31. 31)
      • 3. Burdusel, A.C., Gherasim, O., Grumezescu, A.M., et al: ‘Biomedical applications of silver nanoparticles: an up-to-date overview’, Nanomaterials, 2018, 8, (9), PP. pp. 681706.
    32. 32)
      • 20. Song, J.Y.: ‘Rapid biological synthesis of silver nanoparticles using plant leaf extracts’, Bioprocess Biosyst. Eng., 2009, 32, (1), pp. 7984.
    33. 33)
      • 23. Galvez, A., Ramos, K., Teja, A., et al: ‘Bacterial exopolysaccharide-mediated synthesis of silver nanoparticles and their application on bacterial biofilms’, J. Microbiol. Biotechnol. Food Sci., 2019, 8, (4), pp. 970978.
    34. 34)
      • 50. Paulkumar, K., Rajeshkumar, S., Gnanajobitha, G., et al: ‘Biosynthesis of silver chloride nanoparticles using Bacillus subtilis MTCC 3053 and assessment of its antifungal activity’, ISRN Nanomater., 2013, 2013, pp. 18.
    35. 35)
      • 44. Farhadi, K., Foroughi, M., Molaei, R., et al: ‘Highly selective Hg2+ colorimetric sensor using green synthesized and unmodified silver nanoparticles’, Sensors Actuators, B Chem., 2011, 16, (1), pp. 880885.
    36. 36)
      • 32. Panda, P.K, Mishra, B.K.: ‘Microalga scenedesmus S a potential low-cost green machine for silver nanoparticle synthesis’, J. Microbiol. Biotechnol., 2014, 24, (4), pp. 522533.
    37. 37)
      • 47. Cepoi, L., Rudi, L., Chiriac, T., et alBiochemical changes in cyanobacteria during the synthesis of silver nanoparticles’, Can. J. Microbiol., 2014, 61, (1), PP. pp. 1321.
    38. 38)
      • 26. Paulkumar, K., Rajeshkumar, S., Thajuddin, N.: ‘Biosynthesis and characterization of silver nanoparticles using marine cyanobacterium, Oscillatoria willei NTDM01’, Dig. J. Nanomater. Biostruct., 2011, 6, (2), pp. 385390. 1878–5352.
    39. 39)
      • 4. Dankovich, T.A., Gray, D.G.: ‘Bactericidal paper impregnated with silver nanoparticles for point-of-use water treatment’, Environ. Sci. Technol., 2011, 45, (5), pp. 19921998.
    40. 40)
      • 1. Kishen, S., Mehta, A., Gupta, R.: ‘Biosynthesis and applications of metal nanomaterials’, in Ahmed, S., Ali, W. (Eds.): ‘Green nanomaterials. Advanced structured materials’ (Springer, Singapore, 2020, 1st edn.), pp. 139157.
    41. 41)
      • 22. Neveen, A., Nouf, A., Ibraheem, I.: ‘Green biosynthesis of gold nanoparticles using Galaxaura elongate and characterization of their antibacterial activity’, Arab. J. Chem., 2017, 10, (2), pp. 30293039.
    42. 42)
      • 49. Gopinath, V., Priyadarshini, S., Pyriyadharsshini, N., et al: ‘Biogenic synthesis of antibacterial silver chloride nanoparticles using leaf extracts of Cissus quadrangularis linn’, Mater. Lett., 2013, 9, pp. 224227.
    43. 43)
      • 45. Shukla, A., Iravani, S.: ‘Metallic nanoparticles: green synthesis and spectroscopic characterization’, Environ. Chem. Lett., 2017, 15, (2), PP. pp. 223231.
    44. 44)
      • 55. Singh, R., Shedbalkar, U.U., Wadhwani, S.A., et al: ‘Bacteriagenic silver nanoparticles: synthesis, mechanism, and applications’, Appl. Microbiol. Biotechnol., 2015, 99, (11), pp. 45794593.
    45. 45)
      • 38. Beketov, E.V., Pakhomov, V.P.: ‘Improved method of flavonoid extraction from bird cherry fruits’, Pharm. Chem. J., 2005, 39, (6), pp. 316318.
    46. 46)
      • 53. Zheng, Z., Qilin, H., Han, G.: ‘In situ synthesis of silver nanoparticles dispersed or wrapped by a Cordyceps Sinensis exopolysaccharide in water and their catalytic’, RSC Adv., 2015, 5, (85), pp. 6979069799.
    47. 47)
      • 2. Bilal, M., Rasheed, T., Iqbal, H.M.N., et al: ‘Silver nanoparticles: biosynthesis and antimicrobial potentialities’, Int. J. Pharmacol., 2017, 13, (7), pp. 832845.
    48. 48)
      • 28. Singh, G., Babele, P.K., Shahi, S.K., et al: ‘Green synthesis of silver nanoparticles using cell extracts of Anabaena doliol and screening of its antibacterial and antitumor activity’, J. Microbiol. Biotechnol., 2014, 24, (10), pp. 13541367.
    49. 49)
      • 36. Bradford, M.M.: ‘A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding’, Anal. Biochem., 1976, 7, (72), pp. 248254.
    50. 50)
      • 17. Mirzadeh, S., Darezereshki, E.: ‘Characterization of zinc sulfide (Zns) nanoparticles biosynthesized by fusarium oxysporum’, Mater. Sci. Semicond. Process., 2013, 16, (2), pp. 375378.
    51. 51)
      • 19. Roychoudhury, P.: ‘Cyanobacteria assisted biosynthesis of silver nanoparticles – a potential antileukemic agent’, J. Appl. Phycol., 2016, 28, (6), pp. 33873394.
    52. 52)
      • 52. Sathiyanarayanan, G., Dineshkumar, K., Yang, Y.H.: ‘Microbial exopolysaccharide-mediated synthesis and stabilization of metal nanoparticles’, Crit. Rev. Microbiol., 2017, 43, (6), pp. 731752.
    53. 53)
      • 29. El-naggar, N.E, Hussein, M.H, El-sawah, A.A.: ‘Bio-fabrication of silver nanoparticles by phycocyanin, characterization, in vitro anticancer activity against breast cancer cell line and in vivo cytotxicity’, Sci. Rep., 2017, 7, (1), pp. 120.
    54. 54)
      • 18. Sudha, S., Rajamanickam, K., Rengaramanujam, J.: ‘Microalgae mediated synthesis of silver nanoparticles and their antibacterial activity against pathogenic bacteria’, Indian J. Exp. Biol., 2013, 51, (5), pp. 393399.
    55. 55)
      • 54. Manivannan, S., Seo, Y., Kang, D., et al: ‘Colorimetric and optical Hg(II) ion sensor developed with conjugates of M13-bacteriophage and silver nanoparticles’, New J. Chem.,2018, 42, (2), pp. 2000720014.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-nbt.2020.0077
Loading

Related content

content/journals/10.1049/iet-nbt.2020.0077
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading