access icon free Silk-based microcarriers: current developments and future perspectives

Cell-seeded microcarriers (MCs) are currently one of the most promising topics in biotechnology. These systems are supportive structures for cell growth and expansion that allow efficient nutrient and gas transfer between the media and the attached cells. Silk proteins have been increasingly used for this purpose in the past few years due to their biocompatibility, biodegradability and non-toxicity. To date, several silk fibroin spherical MCs in combination with alginate, gelatin and calcium phosphates have been reported with very interesting outcomes. In addition, other silk-based three-dimensional structures such as microparticles with chitosan and collagen, as well as organoids, have been increasingly studied. In this study, the physicochemical and biological properties of these biomaterials, as well as the recent methodologies for their processing and for cell culture, are discussed. The potential biomedical applications are also addressed. In addition, an analysis of the future perspectives is presented, where the potential of innovative silk-based MCs processing technologies is highlighted.

Inspec keywords: biomedical materials; molecular biophysics; cellular biophysics; proteins; calcium compounds; biodegradable materials; gelatin

Other keywords: collagen; silk-based microcarriers; biomedical applications; calcium phosphates; supportive structures; biocompatibility; silk fibroin spherical MCs; cell-seeded microcarriers; chitosan; biodegradability; silk-based three-dimensional structures; gelatin; attached cells; cell culture; physicochemical properties; nontoxicity; alginate; biological properties; efficient nutrient transfer; cell growth; biotechnology; silk proteins; gas transfer

Subjects: Cellular biophysics; Biomedical materials

References

    1. 1)
      • 74. Perucca Orfei, C., Talò, G., Viganò, M., et al: ‘Silk/fibroin microcarriers for mesenchymal stem cell delivery: optimization of cell seeding by the design of experiment’, Pharmaceutics., 2018, 10, (4), p. 200.
    2. 2)
      • 93. Yang, M.C., Wang, S.S., Chou, N.K., et al: ‘The cardiomyogenic differentiation of rat mesenchymal stem cells on silk fibroin-polysaccharide cardiac patches in vitro’, Biomaterials, 2009, 30, (22), pp. 37573765.
    3. 3)
      • 103. Castro, F., Ferreira, A., Rocha, F., et al: ‘Precipitation of hydroxyapatite at 37°C in a meso oscillatory flow reactor operated in batch at constant power density’, AIChE J., 2013, 59, (12), pp. 44834493.
    4. 4)
      • 75. Yan, L.-P., Oliveira, J.M., Oliveira, A.L., et al: ‘In vitro evaluation of the biological performance of macro/micro-porous silk fibroin and silk-nano calcium phosphate scaffolds’, J. Biomed. Mater. Res. B. Appl. Biomater., 2015, 103, (4), pp. 888898.
    5. 5)
      • 4. Sart, S., Agathos, S.N., Li, Y.: ‘Engineering stem cell fate with biochemical and biomechanical properties of microcarriers’, Biotechnol. Prog., 2013, 29, (6), pp. 13541366.
    6. 6)
      • 78. Eming, S.A., Krieg, T., Davidson, J.M.: ‘Inflammation in wound repair: molecular and cellular mechanisms’, J. Invest. Dermatol., 2007, 127, (3), pp. 514525.
    7. 7)
      • 42. Khandai, M., Chakraborty, S., Sharma, A., et al: ‘Preparation and evaluation of algino-sericin mucoadhesive microspheres: an approach for sustained drug delivery’, J. Adv. Pharm. Res., 2010, 1, (1), pp. 4860.
    8. 8)
      • 90. Ye, M., Zeng, S., Gao, W., et al: ‘Preparation and characterization of genipin-crosslinked silk fibroin/chitosan controlled-release microspheres’, Nan Fang Yi Ke Da Xue Xue Bao, 2014, 34, (6), pp. 875879.
    9. 9)
      • 79. Nichol, J.W., Koshy, S.T., Bae, H., et al: ‘Cell-laden microengineered gelatin methacrylate hydrogels’, Biomaterials, 2010, 31, (21), pp. 55365544.
    10. 10)
      • 63. Wang, L., Xia, Z.R., Lv, L.L., et al: ‘Preparation of silk fibroin microspheres and its cytocompatibility’, Adv. Mater. Res., 2011, 236–238, (January), pp. 19021905.
    11. 11)
      • 31. Terada, S., Nishimura, T., Sasaki, M., et al: ‘Sericin, a protein derived from silkworms, accelerates the proliferation of several mammalian cell lines including a hybridoma’, Cytotechnology, 2002, 40, (1–3), pp. 312.
    12. 12)
      • 3. Martin, Y., Eldardiri, M., Lawrence-Watt, D.J., et al: ‘Microcarriers and their potential in tissue regeneration’, Tissue Eng. B Rev., 2011, 17, (1), pp. 7180.
    13. 13)
      • 25. Patra, J.K., Baek, K.-H.: ‘Biosynthesis of silver nanoparticles using aqueous extract of silky hairs of corn and investigation of its antibacterial and anticandidal synergistic activity and antioxidant potential’, IET Nanobiotechnol., 2016, 10, (5), pp. 326333.
    14. 14)
      • 67. Montano, M.: ‘Model systems’, in Montano, M. (Ed.): ‘Translational biology in medicine’ (Elsevier, Woodhead Publishing, UK., 2014), pp. 933.
    15. 15)
      • 108. Yan, W.-C., Davoodi, P., Vijayavenkataraman, S., et al: ‘3d bioprinting of skin tissue: from pre-processing to final product evaluation’, Adv. Drug Delivery Rev., 2018, 132, pp. 270295.
    16. 16)
      • 97. Gupta, A.K., Coburn, J.M., Davis-Knowlton, J., et al: ‘Scaffolding kidney organoids on silk’, J. Tissue Eng. Regen. Med., 2019, 13, (5), pp. 812822.
    17. 17)
      • 112. Mackley, M.., Smith, K.., Wise, N..: ‘The mixing and separation of particle suspensions using oscillatory flow in baffled tubes’, Chem. Eng. Res. Des., 1993, 71, (Part A), pp. 649655.
    18. 18)
      • 17. Luetchford, K.A., Chaudhuri, J.B., De Bank, P.A.: ‘Silk fibroin/gelatin microcarriers as scaffolds for bone tissue engineering’, Mater. Sci. Eng. C, 2020, 106, (September 2018).
    19. 19)
      • 62. Chung, T.W., Chang, C.H., Ho, C.W.: ‘Incorporating chitosan (CS) and TPP into silk fibroin (SF) in fabricating spray-dried microparticles prolongs the release of a hydrophilic drug’, J. Taiwan Inst. Chem. Eng., 2011, 42, (4), pp. 592597.
    20. 20)
      • 24. Veiga, A., Castro, F., Rocha, F., et al: ‘Recent advances in silk sericin/calcium phosphate biomaterials’, Front. Mater., 2020, 7, (February), pp. 114.
    21. 21)
      • 27. Mondal, M., Trivedy, K., Kumar, S.N.: ‘The silk proteins, sericin and fibroin in silkworm, Bombyx mori linn., - a review’, Casp. J. Environ. Sci., 2006, 25, (4), pp. 7784.
    22. 22)
      • 18. Price, J.R., Shieh, W.K., Sales, C.M.: ‘A novel bioreactor for high density cultivation of diverse microbial communities’, J. Visualized Exp., 2015, 2015, (106), pp. 110.
    23. 23)
      • 15. Goepfert, C., Lutz, V., Lünse, S., et al: ‘Evaluation of cartilage specific matrix synthesis of human articular chondrocytes after extended propagation on microcarriers by image analysis’, Int. J. Artif. Organs, 2010, 33, (4), pp. 204218.
    24. 24)
      • 7. Li, B., Wang, X., Wang, Y., et al: ‘Past, present, and future of microcarrier-based tissue engineering’, J. Orthop. Trans., 2015, 3, (2), pp. 5157.
    25. 25)
      • 26. Hanson-manful, P., Patrick, W.M.: ‘Protein nanotechnology’ (Humana Press, USA., 2013).
    26. 26)
      • 81. Goncharenko, A.V., Kotlyarova, M.S., Moisenovich, A.M., et al: ‘Osteogenic differentiation of mouse bone marrow stromal cells on fibroin microcarriers’, Dokl. Biochem. Biophys., 2017, 477, (1), pp. 345348.
    27. 27)
      • 69. Kundu, B., Rajkhowa, R., Kundu, S.C., et al: ‘Silk fibroin biomaterials for tissue regenerations’, Adv. Drug Deliv. Rev., 2013, 65, (4), pp. 457470.
    28. 28)
      • 12. Numata, K., Kaplan, D.L.: ‘Silk-based delivery systems of bioactive molecules’, Adv. Drug Deliv. Rev., 2010, 62, (15), pp. 14971508.
    29. 29)
      • 19. Svobodová, K., Novotný, Č.: ‘Bioreactors based on immobilized fungi: bioremediation under non-sterile conditions’, Appl. Microbiol. Biotechnol., 2018, 102, (1), pp. 3946.
    30. 30)
      • 88. Sinha, V.., Singla, A.., Wadhawan, S., et al: ‘Chitosan microspheres as a potential carrier for drugs’, Int. J. Pharm., 2004, 274, (1–2), pp. 133.
    31. 31)
      • 29. Kotliarova, M.S., Zhuikov, V.A., Chudinova, Y. V., et al: ‘Induction of osteogenic differentiation of osteoblast-like cells MG-63 during cultivation on fibroin microcarriers’, Moscow Univ. Biol. Sci. Bull., 2016, 71, (4), pp. 212217.
    32. 32)
      • 23. Verma, D., Gulati, N., Kaul, S., et al: ‘Protein based nanostructures for drug delivery’, J. Pharm., 2018, 2018, pp. 118.
    33. 33)
      • 6. Tavassoli, H., Alhosseini, S.N., Tay, A., et al: ‘Large-scale production of stem cells utilizing microcarriers: a biomaterials engineering perspective from academic research to commercialized products’, Biomaterials, 2018, 181, pp. 333346.
    34. 34)
      • 61. Parekh, N., Hushye, C., Warunkar, S., et al: ‘In vitro study of novel microparticle based silk fibroin scaffold with osteoblast-like cells for load-bearing osteo-regenerative applications’, RSC Adv., 2017, 7, (43), pp. 2655126558.
    35. 35)
      • 54. Lindenbergh, R., Roopani Kumar, D., Merchant, N., et al: ‘Extraction and characterization of sericin and its immobilization on hydroxyapatite nanoparticles for tissue engineering applications’, Int. J. ChemTech Res., 2010, 7, (5), pp. 21172124.
    36. 36)
      • 9. Pörtner, R., Nagel-Heyer, S., Goepfert, C., et al: ‘Bioreactor design for tissue engineering’, J. Biosci. Bioeng., 2005, 100, (3), pp. 235245.
    37. 37)
      • 86. Wahl, D.A., Czernuszka, J.T.: ‘Collagen-hydroxyapatite composites for hard tissue repair’, Eur. Cells Mater., 2006, 11, (3), pp. 4356.
    38. 38)
      • 51. Bhardwaj, N., Kundu, S.C.: ‘Silk fibroin protein and chitosan polyelectrolyte complex porous scaffolds for tissue engineering applications’, Carbohydr. Polym., 2011, 85, (2), pp. 325333.
    39. 39)
      • 58. Perteghella, S., Martella, E., de Girolamo, L., et al: ‘Fabrication of innovative silk/alginate microcarriers for mesenchymal stem cell delivery and tissue regeneration’, Int. J. Mol. Sci., 2017, 18, (9), p. 1829.
    40. 40)
      • 64. Gurtner, G.C., Werner, S., Barrandon, Y., et al: ‘Wound repair and regeneration’, Nature, 2008, 453, (7193), pp. 314321.
    41. 41)
      • 115. Castro, F., Ferreira, A., Reis, R., et al: ‘Continuous-flow precipitation as a route to prepare highly controlled nanohydroxyapatite: in vitro mineralization and biological evaluation’, Mater. Res. Express, 2016, 3, (7), pp. 113.
    42. 42)
      • 32. Teramoto, H., Nakajima, K., Takabayashi, C.: ‘Chemical modification of silk sericin in lithium chloride/dimethyl sulfoxide solvent with 4-cyanophenyl isocyanate’, Biomacromolecules, 2004, 5, (4), pp. 13921398.
    43. 43)
      • 57. Barajas-Gamboa, J.A., Serpa-Guerra, A.M., Restrepo-Osorio, A., et al: ‘Sericin applications: a globular silk protein’, Ing. Y Comput., 2016, 18, (2), pp. 193206.
    44. 44)
      • 110. Ferreira, A., Rocha, F., Teixeira, J., et al: ‘Apparatus for mixing improvement based on oscillatory flow reactors provided with smooth periodic constrictions’, Int. Patent WO 2015/056156 A1.’ PCT/IB2014/065273, 2014.
    45. 45)
      • 56. Yang, M., Shuai, Y., Zhou, G., et al: ‘Tuning molecular weights of Bombyx mori (B. mori) silk sericin to modify its assembly structures and materials formation’, ACS Appl. Mater. Interfaces, 2014, 6, (16), pp. 1378213789.
    46. 46)
      • 38. Costa, F., Silva, R., Boccaccini, A.R.: ‘Fibrous protein-based biomaterials (silk, keratin, elastin, and resilin proteins) for tissue regeneration and repair’, in Barbosa, M., Martins, C. (Eds.): ‘Peptides and proteins as biomaterials for tissue regeneration and repair’ (Elsevier, Woodhead Publishing, UK., 2017), pp. 175204.
    47. 47)
      • 68. Mumcuoglu, D., Siverino, C., Tabisz, B., et al: ‘How to use BMP-2 for clinical applications? a review on pros and cons of existing delivery strategies’, J. Transl. Sci., 2017, 3, (5), pp. 111.
    48. 48)
      • 65. Bessa, P.C., Balmayor, E.R., Hartinger, J., et al: ‘Silk fibroin microparticles as carriers for delivery of human recombinant bone morphogenetic protein-2: in Vitro and In vivo bioactivity’, Tissue Eng. Part C., 2010, 16, (5), pp. 937945.
    49. 49)
      • 83. Singh, R.S., Kaur, N., Rana, V., et al: ‘Pullulan: a novel molecule for biomedical applications’, Carbohydr. Polym., 2017, 171, pp. 102121.
    50. 50)
      • 85. Croisier, F., Jérôme, C.: ‘Chitosan-based biomaterials for tissue engineering’, Eur. Polym. J., 2013, 49, (4), pp. 780792.
    51. 51)
      • 72. Rowley, J.A., Madlambayan, G., Mooney, D.J.: ‘Alginate hydrogels as synthetic extracellular matrix materials’, Biomaterials, 1999, 20, (1), pp. 4553.
    52. 52)
      • 45. Zou, R., Niu, L., Liu, Q., et al: ‘A novel nanocomposite particle of hydroxyapatite and silk fibroin: biomimetic synthesis and its biocompatibility’, J. Nanomater., 2010, 2010, pp. 16.
    53. 53)
      • 111. Fitch, A.W., Jian, H., Ni, X.: ‘An investigation of the effect of viscosity on mixing in an oscillatory baffled column using digital particle image velocimetry and computational fluid dynamics simulation’, Chem. Eng. J., 2005, 112, (1–3), pp. 197210.
    54. 54)
      • 59. Arkhipova, A.Y., Kotlyarova, M.C., Novichkova, S.G., et al: ‘New silk fibroin-based bioresorbable microcarriers’, Bull. Exp. Biol. Med., 2016, 160, (4), pp. 491494.
    55. 55)
      • 47. Zakharov, N.A., Demina, L.I., Aliev, A.D., et al: ‘Synthesis and properties of calcium hydroxyapatite/silk fibroin organomineral composites’, Inorg. Mater., 2017, 53, (3), pp. 333342.
    56. 56)
      • 91. Cheerarot, O., Baimark, Y.: ‘Biodegradable silk fibroin/chitosan blend microparticles prepared by emulsification-diffusion method’, E-Polymers, 2015, 15, (2), pp. 6774.
    57. 57)
      • 73. Wu, J., Yang, R., Zheng, J., et al: ‘Fabrication and improvement of PCL/alginate/PAAm scaffold via selective laser sintering for tissue engineering’, Micro Nano Lett., 2019, 14, (8), pp. 852855.
    58. 58)
      • 48. Miroiu, F.M., Socol, G., Visan, A., et al: ‘Composite biocompatible hydroxyapatite-silk fibroin coatings for medical implants obtained by matrix assisted pulsed Laser evaporation’, Mater. Sci. Eng. B Solid-State Mater. Adv. Technol., 2010, 169, (1–3), pp. 151158.
    59. 59)
      • 96. Grebenyuk, S., Ranga, A.: ‘Engineering organoid vascularization’, Front. Bioeng. Biotechnol., 2019, 7, (MAR), pp. 112.
    60. 60)
      • 43. Veiga, A., Castro, F., Reis, C.C., et al: ‘Hydroxyapatite/sericin composites: a simple synthesis route under near-physiological conditions of temperature and pH and preliminary study of the effect of sericin on the biomineralization process’, Mater. Sci. Eng. C, 2020, 108, p. 110400.
    61. 61)
      • 95. Rouwkema, J., Rivron, N.C., van Blitterswijk, C.A.: ‘Vascularization in tissue engineering’, Trends Biotechnol., 2008, 26, (8), pp. 434441.
    62. 62)
      • 94. Morizane, R., Bonventre, J. V.: ‘Organoids for modeling kidney disease’, in Lawrence, M., Davies, J.A. (Eds.): ‘Organs and organoids’ (Elsevier, Academic Press, USA., 2018), pp. 227245.
    63. 63)
      • 55. Li, W., Cai, Y., Zhong, Q., et al: ‘Silk sericin microcapsules with hydroxyapatite shells: protection and modification of organic microcapsules by biomimetic mineralization’, J. Mater. Chem. B, 2016, 4, (2), pp. 340347.
    64. 64)
      • 116. Abbott, R.D., Raja, W.K., Wang, R.Y., et al: ‘Long term perfusion system supporting adipogenesis’, Methods, 2015, 84, pp. 8489.
    65. 65)
      • 117. Detsch, R., Boccaccini, A.R.: ‘The role of osteoclasts in bone tissue engineering’, J. Tissue Eng. Regen. Med., 2015, 9, (10), pp. 11331149.
    66. 66)
      • 53. Yang, M., Shuai, Y., Zhang, C., et al: ‘Biomimetic nucleation of hydroxyapatite crystals mediated by antheraea pernyi silk sericin promotes osteogenic differentiation of human bone marrow derived mesenchymal stem cells’, Biomacromolecules, 2014, 15, (4), pp. 11851193.
    67. 67)
      • 14. Massai, D., Isu, G., Madeddu, D., et al: ‘A versatile bioreactor for dynamic suspension cell culture. application to the culture of cancer cell spheroids’, PLOS One, 2016, 11, (5), pp. 116.
    68. 68)
      • 114. Abbott, M.S.R., Harvey, A.P., Perez, G. V., et al: ‘Biological processing in oscillatory baffled reactors: operation, advantages and potential’, Interface. Focus., 2012, 3, (1), pp. 113.
    69. 69)
      • 49. Chen, L., Hu, J., Ran, J., et al: ‘Preparation and evaluation of collagen-silk fibroin/hydroxyapatite nanocomposites for bone tissue engineering’, Int. J. Biol. Macromol., 2014, 65, (4), pp. 17.
    70. 70)
      • 35. Nilsson, K.: ‘Microcarrier cell culture’, Biotechnol. Genet. Eng. Rev., 1988, 6, (1), pp. 404439.
    71. 71)
      • 34. Roohani-Esfahani, S.I., Lu, Z.F., Li, J.J., et al: ‘Effect of self-assembled nanofibrous silk/polycaprolactone layer on the osteoconductivity and mechanical properties of biphasic calcium phosphate scaffolds’, Acta Biomater., 2012, 8, (1), pp. 302312.
    72. 72)
      • 77. Arkhipova, A.Y., Nosenko, M.A., Malyuchenko, N.V., et al: ‘Effects of fibroin microcarriers on inflammation and regeneration of deep skin wounds in mice’, Biochemistry, 2016, 81, (11), pp. 12511260.
    73. 73)
      • 109. McGlone, T., Briggs, N.E.B., Clark, C.A., et al: ‘Oscillatory flow reactors (OFRs) for continuous manufacturing and crystallization’, Org. Process Res. Dev., 2015, 19, (9), pp. 11861202.
    74. 74)
      • 8. Sun, L.-Y., Lin, S.-Z., Li, Y.-S., et al: ‘Functional cells cultured on microcarriers for use in regenerative medicine research’, Cell Transplant., 2011, 20, (1), pp. 4962.
    75. 75)
      • 76. Jaipan, P., Nguyen, A., Narayan, R.J.: ‘Gelatin-based hydrogels for biomedical applications’, MRS Commun., 2017, 7, (3), pp. 416426.
    76. 76)
      • 52. Farokhi, M., Mottaghitalab, F., Samani, S., et al: ‘Silk fibroin/hydroxyapatite composites for bone tissue engineering’, Biotechnol. Adv., 2018, 36, (1), pp. 6891.
    77. 77)
      • 30. Nguyen, T.P., Nguyen, Q.V., Nguyen, V., et al: ‘Silk fibroin-based biomaterials for biomedical applications: a review’, Polymers (Basel)., 2019, 11, (12), p. 1933.
    78. 78)
      • 98. Jiayao, Z., Guanshan, Z., Jinchi, Z., et al: ‘Antheraea pernyi silk sericin mediating biomimetic nucleation and growth of hydroxylapatite crystals promoting bone matrix formation’, Microsc. Res. Tech., 2017, 80, (3), pp. 305311.
    79. 79)
      • 33. Sofia, S., McCarthy, M.B., Gronowicz, G., et al: ‘Functionalized silk-based biomaterials for bone formation’, J. Biomed. Mater. Res., 2001, 54, (1), pp. 139148.
    80. 80)
      • 16. Perez, R.A., Riccardi, K., Altankov, G., et al: ‘Dynamic cell culture on calcium phosphate microcarriers for bone tissue engineering applications’, J. Tissue Eng., 2014, 5, pp. 110.
    81. 81)
      • 113. Reis, N.M.: ‘Novel Oscillatory Flow Reactors for Biotechnological Applications’. PhD thesis at the School of Engineering of the University of Minho, 2006.
    82. 82)
      • 106. Gupta, S.K., Dangi, A.K., Smita, M., et al: ‘Effectual bioprocess development for protein production’, in Shukla, P. (Ed.): ‘Applied microbiology and bioengineering’ (Elsevier, Academic Press, USA., 2019), pp. 203227.
    83. 83)
      • 71. Lee, K.Y., Mooney, D.J.: ‘Alginate: properties and biomedical applications’, Prog. Polym. Sci., 2012, 37, (1), pp. 106126.
    84. 84)
      • 46. Kong, X.D., Cui, F.Z., Wang, X.M., et al: ‘Silk fibroin regulated mineralization of hydroxyapatite nanocrystals’, J. Cryst. Growth, 2004, 270, (1-2), pp. 197202.
    85. 85)
      • 41. Kwak, H.W., Lee, H., Lee, M.E., et al: ‘Facile and green fabrication of silk sericin films reinforced with bamboo-derived cellulose nanofibrils’, J. Clean. Prod., 2018, 200, pp. 10341042.
    86. 86)
      • 60. Aydogdu, H., Keskin, D., Baran, E.T., et al: ‘Pullulan microcarriers for bone tissue regeneration’, Mater. Sci. Eng. C, 2016, 63, pp. 439449.
    87. 87)
      • 44. Wang, L., Nemoto, R., Senna, M.: ‘Changes in microstructure and physico-chemical properties of hydroxyapatite-silk fibroin nanocomposite with varying silk fibroin content’, J. Eur. Ceram. Soc., 2004, 24, (9), pp. 27072715.
    88. 88)
      • 39. Lungu, A., Albu, M.G., Stancu, I.C., et al: ‘Superporous collagen-sericin scaffolds’, J. Appl. Polym. Sci., 2013, 127, (3), pp. 22692279.
    89. 89)
      • 5. Malda, J., Frondoza, C.G.: ‘Microcarriers in the engineering of cartilage and bone’, Trends Biotechnol., 2006, 24, (7), pp. 299304.
    90. 90)
      • 99. Sunarintyas, S., Siswomihardjo, W.: ‘The effect of sericin application over hydroxyapatite surface on osteoblast cells proliferationInt. Conf. on Instrumentation, Communication, Information Technology and Biomedical Engineering, Bandung, Indonesia, 2011, pp. 145149.
    91. 91)
      • 92. Hu, Y., Liu, C., Liu, Y., et al: ‘An alternative sustained release microsphere of silk fibroin-chitosan: preparation, pharmaceutical characteristics and pharmacokinetic profiles’, Anesth. Analg., 2010, 111, (6), p. 1561.
    92. 92)
      • 84. Egger, D., Tripisciano, C., Weber, V., et al: ‘Dynamic cultivation of mesenchymal stem cell aggregates’, Bioengineering, 2018, 5, (2), pp. 115.
    93. 93)
      • 66. Bessa, P.C., Balmayor, E.R., Azevedo, H.S., et al: ‘Silk fibroin microparticles as carriers for delivery of human recombinant BMPs. Physical characterization and drug release’, J. Tissue Eng. Regen. Med., 2010, 4, (5), pp. 349355.
    94. 94)
      • 82. Li, X., Huang, Y., Zheng, L., et al: ‘Effect of substrate stiffness on the functions of rat bone marrow and adipose tissue derived mesenchymal stem cells in vitro’, J. Biomed. Mater. Res. – A, 2014, 102, (4), pp. 10921101.
    95. 95)
      • 20. Obom, K.M., Cummings, P.J., Ciafardoni, J.A., et al: ‘Cultivation of mammalian cells using a single-use pneumatic bioreactor system’, J. Visualized Exp., 2014, e52008, (92), pp. 18.
    96. 96)
      • 101. Lamboni, L., Gauthier, M., Yang, G., et al: ‘Silk sericin: a versatile material for tissue engineering and drug delivery’, Biotechnol. Adv., 2015, 33, (8), pp. 18551867.
    97. 97)
      • 87. Jiang, J.P., Liu, X.Y., Zhao, F., et al: ‘Three-dimensional bioprinting collagen/silk fibroin scaffold combined with neural stem cells promotes nerve regeneration after spinal cord injury’, Neural Regen. Res., 2020, 15, (5), pp. 959968.
    98. 98)
      • 40. Wang, Z., Zhang, Y., Zhang, J., et al: ‘Exploring natural silk protein sericin for regenerative medicine: an injectable, photoluminescent, cell-adhesive 3D hydrogel’, Sci. Rep., 2015, 4, (1), p. 7064.
    99. 99)
      • 50. Rockwood, D.D.N., Preda, R.R.C., Yücel, T., et al: ‘Materials fabrication from Bombyx mori silk fibroin’, Nat. Protoc., 2011, 6, (10), pp. 143.
    100. 100)
      • 80. Baskaran, P., Udduttula, A., Uthirapathy, V.: ‘Development and characterisation of novel Ce-doped hydroxyapatite–Fe3O4 nanocomposites and their in vitro biological evaluations for biomedical applications’, IET Nanobiotechnol., 2018, 12, (2), pp. 138146.
    101. 101)
      • 11. Mottaghitalab, F., Farokhi, M., Shokrgozar, M.A., et al: ‘Silk fibroin nanoparticle as a novel drug delivery system’, J. Controlled Release, 2015, 206, pp. 161176.
    102. 102)
      • 36. Park, J.-H., Lee, E.-J., Knowles, J.C., et al: ‘Preparation of in situ hardening composite microcarriers: calcium phosphate cement combined with alginate for bone regeneration’, J. Biomater. Appl., 2014, 28, (7), pp. 10791084.
    103. 103)
      • 13. Gwinn, M.R., Vallyathan, V.: ‘Nanoparticles: health effects – pros and cons’, Environ. Health Perspect., 2006, 114, (12), pp. 18181825.
    104. 104)
      • 104. Grasman, J.M., Williams, M.D., Razis, C.G., et al: ‘Tissue models for neurogenesis and repair in 3D’, ACS Biomater. Sci. Eng., 2019, 5, (10), pp. 53275336.
    105. 105)
      • 22. Lawton, S., Steele, G., Shering, P., et al: ‘Continuous crystallization of pharmaceuticals using a continuous oscillatory baffled crystallizer’, Org. Process Res. Dev., 2009, 13, (6), pp. 13571363.
    106. 106)
      • 70. Hu, X., Cebe, P., Weiss, A.S., et al: ‘Protein-based composite materials’, Mater. Today, 2012, 15, (5), pp. 208215.
    107. 107)
      • 37. Caplan, A.I.: ‘Mesenchymal stem cells: time to change the name!’, Stem Cells Transl. Med., 2017, 6, (6), pp. 14451451.
    108. 108)
      • 118. Zhang, X., Wang, X., Keshav, V., et al: ‘Dynamic culture conditions to generate silk-based tissue-engineered vascular grafts’, Biomaterials, 2009, 30, (19), pp. 32133223.
    109. 109)
      • 1. Allied Market Research: ‘Biomaterials market by type (metallic, polymeric, ceramic, and natural) and application (cardiovascular, dental, orthopedic, wound healing, plastic, surgery, ophthalmology, tissue engineering) - global opportunity analysis and industry forecast, 2014–20’, https://www.premiummarketinsights.com/reports-amr/biomaterials-market, accessed February 2020.
    110. 110)
      • 100. Cai, Y., Jin, J., Mei, D., et al: ‘Effect of silk sericin on assembly of hydroxyapatite nanocrystals into enamel prism-like structure’, J. Mater. Chem., 2009, 19, (32), p. 5751.
    111. 111)
      • 28. Duchi, S., Piccinini, F., Pierini, M., et al: ‘A new holistic 3D non-invasive analysis of cellular distribution and motility on fibroin-alginate microcarriers using light sheet fluorescent microscopy’, PLOS One, 2017, 12, (8), p. e0183336.
    112. 112)
      • 89. Lv, B.H., Tan, W., Zhu, C.C., et al: ‘Properties of a stable and sustained-release formulation of recombinant human parathyroid hormone (rhPTH) with chitosan and silk fibroin microparticles’, Med. Sci. Monit., 2018, 24, pp. 75327540.
    113. 113)
      • 105. Lovett, M., Rockwood, D., Baryshyan, A., et al: ‘Simple modular bioreactors for tissue engineering: a system for characterization of oxygen gradients, human mesenchymal stem cell differentiation, and prevascularization’, Tissue Eng. C Methods, 2010, 16, (6), pp. 15651573.
    114. 114)
      • 21. Frahm, B., Brod, H., Langer, U.: ‘Improving bioreactor cultivation conditions for sensitive cell lines by dynamic membrane aeration’, Cytotechnology, 2009, 59, (1), pp. 1730.
    115. 115)
      • 2. Hossain, A., Roy, S., Guin, P.S.: ‘The importance of advance biomaterials in modern technology: a review’, Asian J. Res. Chem., 2017, 10, (4), p. 441.
    116. 116)
      • 102. Morikawa, M., Kimura, T., Murakami, M., et al: ‘Rat islet culture in serum-free medium containing silk protein sericin’, J. Hepatobiliary. Pancreat. Surg., 2009, 16, (2), pp. 223228.
    117. 117)
      • 107. Park, J.-H., Pérez, R.A., Jin, G.-Z., et al: ‘Microcarriers designed for cell culture and tissue engineering of bone’, Tissue Eng. B Rev., 2013, 19, (2), pp. 172190.
    118. 118)
      • 10. Saleem, I., Petkar, K., Somavarapu, S.: ‘Rationale for pulmonary vaccine delivery: formulation and device considerations’, in Skwarczynski, M., Toth, I. (Eds.): ‘Micro and nanotechnology in vaccine development’ (Elsevier, Amsterdam, 2017), pp. 357371.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-nbt.2020.0058
Loading

Related content

content/journals/10.1049/iet-nbt.2020.0058
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading